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FOREWORD

The work described herein was conducted by Teledyne Continental Motors,

Aircraft Products Division, Mobile, Alabama, under Contract NAS3-21272.

The following engineers from the Advanced Engineering Group contributed to

the literature survey, anllysis, mnd the Task I effort: Mr. J. Ronald
Tucker - Combustion System3, Turbocharging, an_ Turbocompounding; Hr.

J. E. Meyers - Materials and Manufacturing; Mr. Samuel N. Crane - Config-

uration, Cooling and Coordination of the Beech Subcontract Work in
Task III.

Subcontract work on Task III- Engine/Airframe Integration, was done at

Beech Aircraft Corporation under the direction of Mr. Roger L. Benefiel,

Croup Engineer, Advanced Product Planning - R&D.

Consultants used during the engine design and performance studies of

Task II were Mr. Paul J. Louzecky of Troy, Michigan, and Mr. Harold V.

Wiknich of Cape Coral, Florida.
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This design study yes conducted co determine the beneflcs thac could be
realized by incorporating advanced technology items into a newly designed
spark-ignition aircraft piston engine intended for production in the lat-
ter part of this decade.

The study resulted in the design and specification of two such engines.
The first, called the _erate Risk Technolog_ Rngir_e, is a design chat
could result from s moderate investment of both time and money, and whose
associated level of technological risk is minimal. The second, called the
RighRisk _echnology Irngine, incorporates a greater degree of technologi-
cal risk to achieve a much more efficient pot_rplmnt _hose design reflects
consideration of longer term applicability to the general aviation market.

While the BighRiskf'echnologglr_ji_e is the main focus o£ this study, the
Node:ate Risk Yechnolorjg Bncjine can be considered the minimum acceptable
representation of an advanced technology design. Theme two engines
bracket the levels of technology that could reasonably be expected to be
made available for an engine that would be in production by December 31,
1989.

The critical item of advanced technology that needs to be developed to make
the Biqh Risk TechnoloTg J_..ine a commercial success i8 the stratified-
charge combustion system. The principal obstacles co improved efficiency
that now exist for the spark-ignition, homogeneous-charge engine using
aviation gasoline are the detonation limit on increasing compression ratio
and the octane number limitation of the fuel. Through high-pressure
direct-injection of comercial jet fuel and spark-ignition of the result-
ins charge, improved efficiency can be realized.

Performance studies based on the installation of the _igh Risk _echnology

mh_glne in 8 current technolory 8enerml aviation airframe show Chat the
transportation -fficiency of the airplane could increase by as much as 68Z.
The possibilities era even more attractive when consideration is given to
the installation of the engine in a newly desil_ed hiEh technology airframe
vlth improved aerodynamic efficiency.

A prosrmmplan has been formulated that is aimed at bringing the required
technology to the point vhere it can be incorporated into an experimental

demonstrator e_ine early in 1986, with the first production engines
available for production airplanes by January I, 1990.

Spinoff of items produced during the tachnolol_ enablement prosrmss are
expected to have mpplicability to the existing product line to improve the
efficiency of the piscon-ensi:e-poverad $aneral aviation fleet even before
the introduction of the totally nov advanced- schnolosy engine in 1990.



SECTION 2.0

INTRODUCTION

Contract NAS3-21272, "Advanced Technology Spark-Ignition Aircraft Piston

Engine Design Study," provides for a study of advanced technology items

that may reasonably be expected to be available for the design of an

advanced technology spark-ignition aircraft piston engine for :he late

1980 time period.

Task I was intended as a predesign phase during which a literature survey

was conducted to establish a technology base from which advanced tech-

nology items could be chosen for the actual design_ in Task II, of an

engine capable of cruising flight at an altitude of 7,620 m (25,000 ft)

with a minimum propeller shaft output of 186 kW (250 hp). In Task 111, the

simulated integration of the advanced-technology engine in both single-

and multi-engine airplanes shows comparative advantages over the baseline

engine representative of the current state of the art.
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In Task IV, the new technology items are identified and discussed. Also,

the extent to which the development needs of these emerging technology

items are met by ongoing programs in Government and industry are addressed.

Development schedules have been prepared to show a recommended timetable

and plan of action that would result in bringing the expected new tech-

nology to the point of cc,mercial production by l)ecember 31, 1989. Table I

is a list of specific program goals by task.

i

During Task 1, it became evident that there were two distinct engine

designs possible for the advanced engine. The first, based on currently

developing homogeneous-charge combustion systems, presented a somewhat

conservative approach in terms of risk. The second, based on stratified-

charge combustion, seemed a more formidable task in its application to a

turbocharged aircraft piston engine. These two combustion systems were

carried along through the study and are named Moderate Risk Technolo_n$

Engine a_d High Risk Technology Engine, respectivel_.

In addition to stratified-charge combustion, the High Risk TechnologN

Engine proposes the extensive use of advanced materials such as titanium;

carbon-, graphite-, or boron-reinforced plastics; and ceramics that carry

an additional risk in terms of cost and durability.

The High Risk Technolog_ Engine is the main focus of this study, whereas

the Moderate Risk Technolog_ Engine can be considered a minimum acceptable

representation of an advanced technology design. These two engines

bracket the levels of technology that could reasonably be expected to be

made available for an engine that would be in production by December 21,
1989.

w
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The recommendations of Task IV are _imed specifically at developin_ the

technology needed for the high risk technology deoign. Should any of the

technology items not be available, then alternative technologies specified

in the _oderate risk technology design would be substituted.



SECTION 3.0

ADVANCED TECHNOLOGY SURVEY AND DESIGN CANDIDATE EVALUATION

3.1 Introduction

The search for a wide-ranging advanced technology base for this study cov-

ered areas that might otherwise have been discarded in short-term design

improvement programs. The attempt here has been to identify rapidly devel-

oping Kechnological areas, or areas in which purposeful, directed effort

could result in significant improvements that would allow the beneficial

use of this expected advanced technology in the design of future general

aviation aircraft piston engines.

Anticipating the state of the art has its pitfalls, of eo_rse. A failure

in the timely development of a critical item or the lack of availability of

such an item at some time in the future could redace a carefully planned

effort to one of only academic interest. Also, unpredictable political,

social, and economic forces have a great deal to do with the success of an

attempt to design a product for a future marketplace. Textbooks and his-
torical technical references abound with such ideas that were, at the time

of their conception, thought to be "too advanced for their time." In all
likelihood, however, some of these ideas were created to fill a perceiveo

future need in an unknown political, social, and economic climate that

never came about. As time went on, these ideas continued to surface from

decade to decade in hope that the time would be ripe.

To avoid this problem, a great degree of flexibility was used in this

attempt to predict what could reasonably be expected to be made available

for an aircraft piston engine designed for the late 1980s and beyond. The
result is a plan of alternatives in the event that the most critical items

are not, or cannot be, developed in time for the certification of a prepro-

duction prototype engine. This plan allows for the eventual adaptation of

such items in the future as their development reaches the point where

incorporation into the design is a possibility.

When considering the application of advanced technology items to the air-

craft piston engine, it is convenient to break down the different groups,

as in Table II. In some cases, it is not possible to make a choice of a

"best concept" in one group without knowing what the "best concept" is an

another group. Io some cases, this interrelationship among items in dif-

ferent groups also provides for an automatic choice of an item in one group

when en item in another group is selected. To avoid the problems involved

i_ this situation, Table I! identifies the hierarchical order by which

decisions must be made. This table is not in perfect order because some of

the items in a major group are not as important as others, but it shows

that the most important topics are combustion systems and fuels. They are

important not only _ecause of the dependency of all other group topics upon

4
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them, but also because they will decide how fuel-efficient the engine will

ultimately be. The decision groups will be discussed in the order of

importance shown in Tab]e II.

3.2 Fuel

3.2.1 The Spark-lgnition Internal Combustion Engine and Its Fuel

Historically, the abundance of a particular energy source has determined

the nature of devices that are used to convert the available form of energy

to a useful purpose. It is appropriate, then, that the discussion of an

advanced, spark-ignition aircraft piston engine should begin with the sub-

ject of fuel.

The petroleum irdustry grew from the discovery of oil in Titusville, Penn-

sylvania, in 1859.(I)* During the early years of the industry, before the

automoLile, the main product from crude oil refining was kerosene, and gas-

oline was considered a useless (and hazardous) by-product, often being

dumped into the nearest waterway. By 1890 the oil business hmd grown to

the extent that the Sherman Anti-Trust Act was passed, div_:_ _ Standard

Oil into 34 separate companies, the largest of which was _t_d_rd Oil of

New Jersey (now Exxon).(2)

The invention of _he first successful four-stroke cycle internal combus-

tion engine ia 1876 by Nicolaus Otto led the proliferation of this type of

engine throughout the industrial nations of Europe and in the United

States, and it can probably be said with a great deal of accuracy that the

spark-ignition piston engine owed its successful beginnings in the U.S. to

an abundance of gasoline.

Early automobile engines in the pre-1905 era used this volatile fuel that

was a p_oduct of straight distillation of crude oil. With a compression

ratio of 4:1 or less to avoid detonation, these engines started well and

had good cold-weather performance because of the volatility of these early

gasolines.(3)

Between 1907 and 1916, demand for gasoline increased fivefold. To meet

this greater d_mand, the yield of gasoline was increased by the new process

of thermal cr# king, which converted other straight distillation products

such as keros. _e, gas oil, and residuals. This process, however, produced

a gasoline with a broader boiling p_int range. The end point had increased

from 93°C to 182°C (200°F to 360°F) by 1916, causing cold starting prob-

lems. These problems were alleviated somewhat by intake manifold heating

and the invention of the electric starter.(3)

*Numbers in parentheses designate references at the end of this report.

S
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The concept of anti-knock* properties of fuels was only vaguely recog-

nized, and the poor quality, about 50 octane, kept compression ratios down

to the 4-to-I level. There was, however, research under way to solve the

problem of knock-!imited compression ratios. Two distinct paths of

resear'h involving the relationship of knock tc fuel, and to combustion

chamber design, led to the discovery that the addition of small amounts of

tetraethyl lead (TEL) to gasoline (T. Midgley), or proper combustion cham-

ber design (H. R. Ricardo), would allow the use of higher compression

ratios without knock, which improved the fuel economy of the engine. 8

1923, TEL as a gasoline additive was co_nercially available in the U.S.(4i

From that time on, the oil industry and the automotive industry grew

rapid'v and interdependently. Today, in the U.S., production of spark-

ignitlon piston engines has reached about lO million units per year - most

for the automotive industry. In the past 120 years, the oil industry has

pumped 150 billion barrels of oil out of the ground in the U.S.(5), with

estimated 1979 production consuming about 3.47 billion barrels of domestic

oil and 3.83 billion barrels of imported oil. The demand for motor gaso-

line alone in 1979 is estimated to be 2.75 billion barrels of oil equiva-
lent (BOE).**(6)

3.2.2 The Energy Situation

Figure I shows estimated 1979 U.S. energy use broken down by source, prod-

uct, and transportation mode. The t _tal 1979 U.$. energy demand is esti-

mated to be 14.78 billion BOE. Of th\s amount, half will be derived from

crude oil. The largest sitlgle product of crude oil is motor gasoline,

which will comprise about 37.7Z of oil production.(6) In the transporta-

tion sector, which uses half of the total products produced from crude oil,

motor gasoline accounts for 73.3% of all transportation fuels, and avia-

tion fuels, about I!_0Z_(7) General aviation accounts for the use of only

7.6% (including manufacturing) of all aviation fuel. Thus, the aviation

fuels used by general aviation amount to about 0.2% of the estimated 1979

total U.S. energy consumption, as shown in Figure 2. Aviation gasoline, in

particular, will comprise less than 0.7Z of all gasoline produced.

The current domestic energy situation is tied strongly to the history of

Federal Government regulation and support of the oil industry. Table III

gives a brief historical summary of legislation affecting the relationship

between oil price and oil supply.

*The definition of "knock" as used here is the audible result of self-

ignitlon of pre-flame-front end gases during the combustion process.

**5.86 GJ (5.55 million Btu) = 1 barrel of oil (159 liters or 42 gal),

which gives an average lower heating value of 42 MJ/kg (18,100 Btu/lbm).
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Although there are many conflicting views of what the future will hold with

regard to the specific e_ergy supply from now until the turn of the cen-
tury, the following gener 1 predictions seem to be prevalent in the litera-

ture: (7) through (12)

a The requirements for energy in the U.S. are projected to
increase, but at a rate of about half of the historic rate.

• U.S. energy demand as a percent of total world energy
demand viii continue to decline.

• O.S. imports of oil and natural ga_ will continue to

increase at least through 1990.

Transportation will continue to be almost entirely depend-

ent on oil through 1990) although demand growth will be
s_o_r than the historic rate because of increased fuel

efficiency of new cars.

e Coal, oil shale, and nuclear energy are projected to have

the greatest potential for growth in reducing U.S.

dependence on imported gas and oil.

Hydro, geothermal, and solar energy rill supply between 3
and 6% of U.S. energy needs by 1990. Hydro and geothermal

power have little growth potential because of limited site

availability.

There will be no drastic changes in the demand for various

sources of energy. There may be spot shortages in supply,

and politically motivated shortages in supply of imported
oil and gas will be short term and will be handled by

rationing and domestic inventory dravdo_ms.

Many energy outlook studies have been made based on both optimistic and

pessimistic prediction models that attempt to bracket a probable future

energy situation. From these studies, it seems clear that while there is

no inaediate "oil crisis" the real crisis lies in the problem of the lead-

time required to develop alternate energy sources into profitable use.

The rate of energy consumption has always been tied to economic growth.

Recently, the Presldent's Council on Environmental Quality undertook a

study, "to investigate the potential for achieving lover energy growth in

the United States and the implications of this low energy growth for the

econo_, the environment and government policy."(13) One might conclude

that this study reflects the Administration's view of the potential for

satisfying all the conflicting needs that arise when the traditional ties

are broken between increased real Gross National Product and energy demand

growth. The conclusion of this study is that it is possible for the U.S.



to prosper, "on much less energy than has been commonly supposed," One

study cited by this report suggests that, "a major slowdown in demand

growth can be achieved simultaneously with significant economic growth by

s,Jbstituting technological sophistication for energy consumption." This

study also found that the demand for energy in the year 2010 could be about

the same as today's level, while providing a higher level of amenities,

even with a population incrt,_e of 35%.

In surveying the literature, _ne cannot help but be overwhelmed by the

enormity of worldwide energy production and consumption. Such complex

interrelationships exist Chat even the most sophisticated mathematical

model can deal only with isolated segments of the effect of any energy-

related change to entire worldwide systems. From all of these studies,

however, comes a clear picture of what the future must be. A shift in

emphasis must take place toward energy resources Chac are uore vast than

the relatively minute quantities of petroleum and natural gas chat exist.
It is estinmted that about 1,624 billion barrels of oil remmin as the

world's ultimate petroleum supply. At the current world rate of consump-

tion, that amounts to only a 60- to 70-yr supply. At a growth rate of 3%
per yr, only a 38-yr supply exists.(14) (The oil exporting nations, such

as Saudi Arabia, are interested in controlling the rate of depletion of

their finite resource, while establishing an industrial economy that is
not totally dependent on the sale of crude oil. So, it is unlikely that

all of the available petroleum will ever be consumed by exportation.)

In comparison, U.S. ultimate coal, uranium, and oil shale reserves are

estimated to amount to 33-times as much as the world's ultimate petroleum

supply.(14)

In suammry, there is not an energy shortage, but rather an impending crude

oil shortage. With the certainty of decreasing availability of petroleum-

based fuels, plans must be made to shift toward the use of alternate energy

sources in those areas that are the most economically, environmentally,

i

I

I

I

I

I

I

I

The following discussion is based on a list of candidate fuels that will be

discussed individually with reference to Table IV, which compiles signifi-

cant fuel properties for comparison purposes. One of the columns in

Table IV lists the mass of each fuel plus its tank, equivalent to 227

liters (60 gal) of IOOLL avgas in energy content. This, of course, assumes

that equivalent brake thermal efficiency can be attained for each fuel in
the engine for which it is intended. A departure from the reasonableness

of this assumption occurs when consideration is given to the efficiency of

the entire aircraft. A fuel thac occupies a large volume or is high in
mass per unit energy content may affect overall aircraft efficiency. This

possibility forms one important basis in considering each fuel for air-
craft use.
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i and practically susceptible to such a change. 1_
3.2.3 Analysis of Possible Future Fuel Sources for the Spark-Ignition

Internal Combustion Aircraft Piston Engine



3.2.3.1 H_droEen

Hydrogen as a fuel for internal coabuetion engines has been a favorite pro-

posed alternate fuel for some time. Combustion of hydrogen with air pro-

duces water vapor and some oxides of nitrogen. Its energy content per unit

emss (120,824 kJ/kg, or 51,980 Btu/Iba) is over 2.5 times greater than

most liquid hydrocarbon fuels (see Table IV). Part of the fascination with

hydrogen relates to its abundance. It is the third most abundant atom to

be found in the Earth's crust (atmosphere, oceans, and 16 km of solid

materia!), end _-b..ile rarely found in the free state, it can be produced

easily (if net cheaply) by electrolysis of water.

Hydrogen, he,ever, cannot be considered a primary energy resource, but

rather must be regarded as an energy carrier. Like electricity, another

prilary energy resource is required to produce it. The technical feasi-

bility of using hydrogen as a fuel is in its ability to replace other gase-

ous and liquid hydrocarbon fuels in s_,ny applications.

In the near term, the use of hydrogen would rarely prove the most economi-

cal alternative in either monetary or basic enersy resource term for the

remainder of this century. The massive investments in the production, dis-

tribution, and storage of today's fuels pose a very significant barrier to

a rapid voluntary conversion to a hydrogen econoay.(15)

The main sources for obtaining large quantltites of hydrogen are coal and

water. For the various processes for producing hydrogen from coal, the
basic common reaction is

C ÷ H20--_CO + I] 2

although the exact process is more complex. The economical electrolysis of

water depends to a great extent on the cost of electricity used in the

process:

2H20-_-2H 2 + 0 2 •

A great deal of promise for this nsethod was expected to result from the

widespread availability of electricity from nuclear power in the near term

with supplemental production from solar converters in the more distant

future. Also, thermochemlcal processes with the net effect of the elec-

trolysis reaction have been studied.

Studies have shown that hydrogen produced by electrolysis would cost 1.77

times as much ss that produced from coal gasification (16), and hydrogen
from coal would cost 3.83 times as much as Jet A fuel made from oil

shale.(17)

Recent studies have also shown th&t liquid hydrogen (LH 2) say have inter-
esting possibilities for large, long-range supersonic jet aircraft.
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Flight profiles for these aircraft and the improved ratio of fuel weight to

tank mass because of their large size make hydrogen an attractive fuel.

Table IV shows that for all three storage methods considered for hydrogen,

the tank plus fuel mass equivalent to 227 liters (60 gal) of IOOLL avgas

presents a severe payload venally to the small aircraft. At best, liquid

hydrogen in a cryogenic storage tank would reduce the payload by If2 kg

(248 Ib). Also, since liquid hydrogen would most probably have to be

stored in the fuselage, a penalty would be paid for the additional 0.807 m _

(28.5 ft _) of storage space, l_e current practice of storing fuel in the

wings of aircraft reduces aircraft empty mass by allowing the internal wing

structure to serve as a fuel tank and the fuel load in the wings reduces
structural mass by helping to reduce bending moments within the wing and

loads at the wing attachment points. We may clearly eliminate the use of

hydrogen gas in its compressed state for similar reasons and also include
the risk of tank failure.

While metal hydride storage can contain more hydrogen per unit volume than

normal high-pressure or cryogenic techniques, and its safety features seem

to be favorable, the tankage mass is beyond reason for aircraft. The fact
that I ft _ of a finely divided metal can absorb 25.5 m 3 (900 ft _) of hydro-

gen gas without an appreciable increase in volume seems attractive until it

is realized that the storage tank must be filled with the finely divided

metal, Even the light complex hydrides such as LiA1Hx, LiBHx, MgAIHx, and

Mg2NiH x (on whlch the weight in Table IV is based) do not improve the situ-
ation. The fact is that the entire payload of most light aircraft would be

consumed by enough metal hydride stored hydrogen to equal 227 liters

(60 gal) of avgas.

3.2.3.2 Alcohol

Derived from the hydrocarbons methane (CH 4) and ethane (C2H6) , methanol

(CH3OH) and ethanol (C2H5OH) are monohydric alcohols (containing only one

OH per molecule). The hydroxyl radical (OH) has the property of bestowing

waterlike properties on what were originally volatile but inert

hydrocarbons.

Current U.S. production of methanol amounts to less than 0.1I of all of the

energy consumed by the U.S. The greatest quantity of production methanol

comes frma the catalytic hydrogenation of carbon monoxide:

2H 2 + CO--'-CH 3 OH .

The source of the carbon monoxide and hydrogen is currently synthesis gas

that is manufactured from natural gas. However, synthesis gas can also be

produced from coal in the manner similar to that discussed earlier in the

production of hydrogen from coal.

The use of alcohols as internal combustion engine fuels in the U.S. is

limited primarily to use as a gasoline extender in the mixture called
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"gasohol." The recently passed Hational Energy Act provides for the exemp-

tion of gasohol containing "at least IOT alcohol produced from agricul-

tural products or waste frol the 4 cents pe_" gallon Federal Excise Tam."

Alcohol produced from coal, oil, or nstursl gas is ineligible for the tax
e xeapt ion. (18)

The oil import _roblen is so critical for Brazil, vhich i_ports 80Z of its

crude oil, that now bergen 5 and IOT alcohol is mixed with Brazilian gaso-

line_ and consideration is being given to raising this percentage to 25 or

30Z to further reduce oil ilporcs.(19)

It is estitated that less than 2Z of the land area in Brazil could produce

enough fuel to replace its imq>orted petroleum (the U.S. Consuues 20 times

• s such oii as Brazil). Brazil's eventual use of ethanol by itself as s

transportation fuel seems certain because of the following conditions:

• The internal combustion engine can readily be converted to

use ethanol efficiently.

• The cli_te of Brazil is excellent for sugarcane and

c•s•va growing, frcR which eth•n_,l can be produced.

• The sugarcane and casava industries in Brazil are a well-

est•bllshed part of the economy.

• Brazilian government supports and encourages the produc-

tion and use of ethanol as a transportation fuel.

• Brazil's economically recoverable coal and oil reserves

are insufficient to reduce its dependence on ilq_orts.

The availability of cheap agricultural labor i_proves the

econolics of the use of agricultural products for ethanol
production.

• Arable, readily accessible land in Brazil is estimated co

be in excess of 405,OO0 _ 2 (IOO million acres).

Br•ail's situation is unique in that it promises to sake it the first

developin s country without large oil and coal resources to achieve energy
zelf-sufficlency.(20)

In the U.S.p however_ the altuatlon is quite different. The availability

of large reserves of coal and oil shale =_ke the production of ethanol from
biolmss an uneconomical prospect.

The production of wechanol frou coal is estlasted to be only three-fourths

am efficient as the conversion of coal to gasoline (Figure 3). In ocher

words, producing methanol as a fuel froucoalvould deplete coal reserves s

third fester than coal-derived gasoline. Also, sethanol has sore problems

II



in practical use as an aviation fuel. Its low energy content _d_en compared

with gasoline means reduced range or decreased payload. A tank of methanol
equiva!e_t to 227 liters (60 gal) of 100LL avgas imposes a 181 kg (400 Ib)

mass penalty (Table IV).

The use of methanol as an extender for avgas similar to automotive gasohol

would harp a problem of phase separation if the mixture contacts water.

Also_ its motor octane number of 92, while quite adequate for automobile

engine use, would degrade the minimum octane requirement (lO0) for the

majority of modern aircraft piston engines. Th.e expected trend toward

increased compression ratios in aircraft piston engines for high thermal

efficiency would preclude the use of any blending constituent that would

reduce octane number.

3.2.3.3 Petroleum &.,d S_ncrude-Based Fuels

The remainder of the fuels shown in Table IV fall into the category of

petroleum and syncrude-based fuels. That is, they can be most economically

and efficiently derived from the refining of crude oil, or syncrude made
from coal, oil shale, or tar sands.

A suumsry of the conclusion of an EPA-sponsored study by Exxon Research and

Engineering Company (16) indicates that the most likely direction for

alternative fuels for the 1982 - 2000 time frame is the supplement of

petroleum fractions by blending with coal and oil-shale-derived

components.

The report predicts that initial production of petroleum-type fuels from

coal and oil shale is l_kely by 1981. Also, the production of these fuels

will not be limited by the size of domestic and oil shale resources, but

eventually by water availability and environment_l and ecological consid-

erations. The report goes on to say that coal and oil shale fuels have the

potential for becoming a major factor in contributing to automotive fuel

supplies by the year 2000. While the initial cost of synthetic fuels may

be high, the costs of these fuels are expected to decline on a constant

dollar basis, reflecting new and improved technology. As the more economi-

cally producible synthetic fuels are d_pleted, costs will rise again. As

other forms of energy, such as nuclear power, displace liquid fuels from

nontransportation uses, then these liquid fuels can be released for trans-
portation needs.

This report seems to indicate a need for a priority system that will define

the allocation of portable fuels to the various transportation modes on the

basis of economic, environmental, and technological flexibility (e.g., the
previous discussion indicated it will be more feasible for supersonic

transport aircraft to use liquid hydrogen as a fuel than for small general
aviation aircraft).

12

.[
-7

4Po

wl

.t
_qp.

.L

i

T

i

.1

]

;

I

t



I

1

i,
[

The fuels we rill be discussing here can a!l be obtained from what can be

regarded as the near-future U,S. transportation system energy source -

hydrocarbon fuels derived from petr_leum_ coal, and oii shale. The spe-

cific fuels will all be produced from a refini 6 process similar to that

which exists today.

To understand the specific needs of an advanced spark-ignltion aircraft

piston engine, it is useful to take a brief look at the process by which

today's hydrocarbon fuels are produced. Figure 4 shows a schematic that is

representative of a modern petroleum refining process and the products

that are produced.

Crude oil (and syncrude) consists of a range of hydrocarbons from the sim-

plest C_ (methane) to very heavy molecules containing over 20 atoms of
carbon per molecule. The specific characteristics of crude oils vary

considerably.(21)

Generally_ crude oils contain 84 to 88Z carbon and 11.5 to 14.5Z hydrogen,

with small percentages of impurities such as water t sulphur, oxygen, and
nitrogen.

The refining of crude oil begins with fractional distillation that sepa-

rates the distilled products into groups or fractions according to boiling

point ranges. The products may be broadly classified_ in order of decreas-

ing volatility, into gases, light distillates_ middle distillates, and
residue.(22)

While the operational processes of a modern refinery are extremely com-

plex_ the fundamental processes that are applied to the products produced

after fractional distillation amount to a molecular reorganization to
achieve more of the desired end-product mix.

The molecular reorganization or conversion processes that are commonly
used are:

. Cracking (22) (16)

Thermal Crackin& - a process used during the early days

of refining in which high pressures (up to 2&48 kPa)

and high temperatures (482oc) are used to break carbon-

to-carbon bonds in high molecular weight fractions.

Because insufficient hydrogen atoms are present to

attach to the broken carbon bonds, "unsaturated" com-

pounds such as ethylene (C2X 4) and acetylene (C2H 2) are
forled.

Catalytic Cracking - the most important source of high-

grade gasolice and petrochemicals. The use of a finely

divided catalyst (almlina + silica) increases the rate

of cracking reactions vhile improving the quality of

gasoline blending stock.

13
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Hydrocracking - involves the use of hydrogen under
pressure with a catalyst to produce lower Iolecular

weight molecules.

s Reforming (22) (16)

Thermal Reforming - a process not used much today, it

has the purpose of achieving molecular rearrangements

rather than conversion to lower molecular weight

molecules.

Catalytic Reforming - uses a catalyst (such as plati-

num) and hydrogen to increase octane of naphtha frac-

tions for use as a blending component for gasoline.

Hydrogen is produced as a by-product.

• Upgrading (16)

Upgrading is any process that improves the quality of a

product relative to the feedstock. Desulfurization and

reduction of viscosity (visbreaking) are upgrading proc-

esses that improve product quality.

_II of these processes, including distillation, are considered to be

pot_ntially applicable to the refining of synthetic crudes derived from

coal or oil shale.(17)

Table V shows the esti_ted average yield from a barrel of crude oil.

While the average yield of gasoline was 44.4%, gasoline production can

change to suit the refinery end-product mix requirements. Very efficient

and modern hydrocrackers can produce as much as 67% gasoline from a barrel

of oil, if given the appropriate crude oil withwhich to work. The maximum

percentage of gasoline that can be produced by any refinery is a strong

function of the type of crude oil used.

The amount of gasoline produced in a refinery is to the detriment of the

production of heavier fuels. Also, specifications (including boiling

point range) restrict the production of more of a given fuel, but in relax-

ing those specifications fuel quality suffers.

An advanced spark-ignition aircraft piston engine would most certainly

have a high cmapreaslon ratio compared to today's engines. The limit on
compression ratio in a normal homogeneous-charge, spark-ignition piston

engine is the fuel octane number. In a multifuel engine, the object is to

design a combustion system that is insensitive to either octane or cetane
nu_er.

The most important question to answer when considering what fuel an

advanced engine should use, if conservation of total crude 0il is the ulti-

mate goal, is '_nat single fuel from s barrel of oil will reduce total

refinery/vehicle energy consumption?"

14
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Figure 5 shows the distillation characteristics of a variety of products

derived from crude oil by refining. Also shown are methanol and ethanol,

which, because of their monomolecular content, are single boiling-point

fuels. As an example, Pig,_re 5 shows that aviation gasoline has a narrower

distillation range (66 to 171oc) than premium motor gasoline (32 to 213oc)

and that JP-4_ a naphtha-typ_ jet fuel u._ed pri__r;_!y by the .-.i!i_ary, has
a very wide distillation range (60 to 243oc) compared to Jet A (Kerojet)

fuel (179 to 254oc), which is used as c_mercial jet fuel.

Two studies of the Vehicle-Fuel-Refinery (VFR) as a system have shown that

a broad-range distillate fuel (38 to 343°C) used in a direct-injectio,

stratified-charge (DISC) engine would provide superior VFR economy over
other fuels.(23) (24)

Such a fuel might be called "diesoline" because it covers the entire dis-

tillation range from gasoline to No. 2 diesel fuel. The use of this fuel

would require a specialized combustion system with multifuel capability

such as the Texaco TCCS system. The economics of the VFR system study is
indicative that refinery yield is an important conalderation in crude oll

resource conservation. The yield of a broad-specificatiov fuel may reduce

refinery energy consumption per unit of product energy content.

The automotive industry could be adaptable to such a change. The primary
fuel for the domestic auto system is gasoline. Diesel fuel is available in

retail quantities to support the expansion of the U.S. diesel-powered

automobile market. A manufacturer could produce a direct-injection
stratified-charge engine that would run on either fuel at the consumer's

option (fuel price or availability) and the DISC auto population could
expand sufficiently to allow production and distribution of a broad-

specification fuel. The largest apparent roadblock to the realization of

this hypothetical outlook would probably be the stringency of automotive
exhaust emission standards.

The use of diesoline in a DISC, spark-lgnition aircraft piston engine would
depend on its widespread production by U.S. refineries and an additional

distribution network to supply the fuel to airports throughout the
country. Current projections of the introduction of automotive DISC

engines do not hold much promise of a broad-range fuel being marketed

com_rcially within the time period being considered for the advanced
aircraft piston engine. Exhaust emission constraints on the first several

generations of DISC automotive engines will cause them to be designed to
operate on currently available fuels.

Form many years, and especially recently, proposals have been made to allow

the use of automotive gasoline (mogas) in aircraft piston engines. While

an advanced engine and airframe system could certainly be designed to use

automotive gasolines, some serious problems would have to be overcome.

These problems could be solved, but the resulting engine would not be capa-

ble of the efficiencies attainable on the higher octane 100LL avgas that

" 15



exists today. Premium, leaded tongas, which is being phased out in favor of

unleaded tongas, has a motor octane number of about 90.(25) Unleaded regular

mogas has a motor octane rating of only 84 and has been shown to have a

negative impact on the VFR system.(24) In addition, the supply of tongas at

airports would require separate tank provisions since its use is not com-

patible with the existing aircraft piston engine fleet_

Consideration given to the use of a wide-cut (broader-specification) avgas

would necessarily require an investigation into VFR economy. Considering

the total impact on VFR economy of the :_i_:';_!v ===!I p_cencage of avgas

produced in the U.S., a strong case cannot be made on behalf of crude oil

conservation. Bowever, the objection of separate tanks at airports for

this fuel could be overcome, unlike the case with the use of mogas. If a

wide-cut avgas could be produced that would be compatible with the existing

aircraft fleet, the possibility exists that it would be a good candidate

for an advanced spark-ignitlon aircraft piston engine.

T_e use of so-called '_eavy fuels" in the advanced engine poses problems

similar to those stated previously. Diesel fuel, while widely available,

would require additional tanks to be installed at many of the over 14,000

airports available for use by general aviation aircraft. The economic

incentive for such a task is decisively unfavorable for the small numbers

of aircraft that would exist. The same argument can be applied to the

JP-4, JP-5, and JP-6 fuels, which are primarily used in military jet
aircraft.

A circumstance does exist, however, that would permit consideration of

commercial Jet A fuel in an advanced DISC aircraft piston engine. Before

business jets became a significant factor in general aviation, most full-

service airports carried at least two types of aviation gasoline. The

lower octane 80/87 served most existing general aviation aircr=ft piston

engines, whereas a higher octane gasoline was used for commercial sir-

craft. The two-tank system remained and the second, higher octane, fuel is

now 100/130 low lead (or 100LL). The IOOLL fuel was intended to be a uni-

versal fuel for aircraft piston engines during the gradual phaseout of

80/87. All current production aircraft piston engines are designed to

operate satisfactorily on IOOLL avgas, and supplies of 80/87 will con=inue

to decrease as the population e_ older engines dwindles and the premium

price of 80/87 avgas increases over that of 100LL.

It would be easy to draw a parallel to the current availability of diesel

fuel for diesel-powered cars, to the availability of Jet A fuel for an

advanced spark-ignition aircraft piston engine. Although jet fuel is pro-

duced in larger quantities than avgss, it is not as widely available. The

situation is similar to the availability of diesel fuel for diesel-powered

automobiles. As an example, of all the public airports in the State of

California, only 71% have aviation fuels for retail sale. Of those sir-

ports thaC have fuel, only 257 have Jet A fuel available. If this statis-

tic is typical of the entire J.S., then only 18% of all airports would be

i

9b

,t

4_

!
_m



capable of providing for the fuel needs of aircraft using Jet A fuel. This

inconvenience would require more careful flight planning.

Another advantage of a stratified-charge combustion system for an advanced

aircraft piston engine is that the broader tolerance of the engine-_o-fuel

characteristics would be an advantage, should the specifications for jet

fuel be modified in the future to accommodate the use of refinery feed-

stocks or blending stocks derived from oil shale or coal syncrudes. Cur-

rent aircraft piston engines have exhibited much more sensitivity tu

changes in fuel specifications, as was seen in the attempt to develop a

universal aviation gasoline (100LL) to replace existing 80/87 and 100/130.

Table !V shows that the mass penalty of Jet A fuel compared to 227 liters

(60 gal) of avgas would be negligible, provided the efficlencies of the

engines using these fuels is the same. An engine (probably direct-

injection, stratified-charge) designed to use Jet A fuel would be more

capable of adapting to an adjustment in VFR economy by broadening the

specifications of the fuel than current homogeneous-charge, arias-fueled

aircraft piston engines.

The price controls on Jet A fuel and avgas have recently been removed,

which should provide the economic incentive for production, eliminating

spot shortages that had been predicted had the price controls not been

removed.(26)

Current U.S. production of commercial-grade jet fuel amounts to slightly

less than 7% of barrel of oii. Free-world production of jet fuel is from4

to 5Z. The potential yield of jet fuel by straight distillation is nearly

12Z if it becomes economically attractive to do so.

Thus_ increased production of comrcia! jet fuel is possible without

increasing total crude oll demand if the use of alternate energy sources

can be provided for other current crude oil users, notably stationary

powerplants. There appears to be no ready substitute for fueling aircraft

wlth anything but petroleum-derlved productJ in the foreseeable future,

and the assurance of adequate supplies of these fuels for aviation depends

heavily on the development of alternate energy sources, especially nuclear

power and coal.

3.2.4 Summary - Fuel

There are two reasonable fuel choices for an jdvanced spark-ignition air-

craft piston engine: 1) a wide-cut aviation gasoline with an octane rating

not leas than the current IOOLL and 2) Jet A or Kerojet fuel.

The development of an advanced, high-compression-ratio, lean-burn combus-

tion system would allow an improvement in efficiency using 100LL, or a

wide-cut, I00 octane fuel.

17



Development of a direct-injection stratified-charge type of engine would

permit the use of widely available commercial jet fuel or a wider-cut ver-

sion of this fuel that could be developed to improve the VFR sFstem effi-

ciency in conserving crude oil resources.

The high-compression-ratio, lean-burn system is an area of developing

technology that could be ready for introduction by the late 1980s.

A direct-injection stratified-charge engine using Jet A fuel would require

more intense development to be re_dy for introduction b_ the late 1980s.

While it appears that the total use of Jet A fuel would be the ultimate

goal, a nearer term solution with less risk and more immmdiate results is

the development of a more fuel-efficient engine that could use a wide-cut

avgas compatible with the current piston engine fleet.

The specific advanced tecnnology items identifiable are as follows:

• Determine the tlmit_ of a wide-cut avgas compatible with

the current aircraft piston engine fleet that could be

used in an advanced _ngine. Maximum VFR efficiency would

be the goal for the advanced engine, within the con-

straints imposed by existing engines.

• As a long-range goal, develop a combustion system compati-

ble with the use _f co_mrcial jet fuel, with the idea of

eventually displacing the need for aviatio_ gasoline. The

combustion system should have a demonstrably higher VFR

efficiency and the capability of using a broader range of
fuels.

3.3 Combustion Systems

3.3.1 Introductio_

Once the matter of fuel availability is decided, the choice of combustion

system can be determined. In Section 3.2, the relationship between fuels

and combustion systems was briefly described. The principal limitation to

improved fuel economy for the homogeneous-charge engine was identified as

knock-limited compression ratio, and the two methods of overcoming this

limitation were identified as l) fuel octane number modification by using

additives and 2) combustion chamber design.

In the aircraft piston engine industry, fuel economy has always been a

major consideration in engine design. The motivating force for fuel

economy in the aircraft piston engine was traditionally one of i_creased

utility. For every extra liter of fuel carried on board, the useful pay-

toad bad to be reduced by 0.72 kg - the mass of a liter of fue[. Any

deviations from operation at best economy fuel-air mixtures were Ji:tated
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by the desire for maximum power for takeoff and by temperature limitations

on engine materials. As a result, the aircraft p:ston engine has been

among the most fuel-efficient, spark-ignition en_ in_ in the world. Now,

with the fuel accounting for an ever-increasing portion of the direct oper-

ating costs associated with aircraft ownership, rue: economy has become

even more important.

3.3.2 Homogeneous Charge Engines

Improving the fuel efficiency of this class of engine by increasing com-

pression ratios is limited in two ways. First, increasing the fuel _ctane

rating above its current level of I00 PN* by using additives is limited by

the lead tolerance of the existing piston engine fleet. Unfortunately, no

known additive exists that could economically increase the performance

number of aviation _asolines without adverse environmental or engine dura-

bil_ty effects. Second, while increased octane rating can be refined into

a fuel, current 100LL avgas is considered to be at the limit now. The

improvement in efficiency of an advanced, homogeneous-charge engine gained

by increasing compression ratio to take advantage of increased octane rat-

ing refined into the fuel would be offset by increased energy use at the

refinery needed to make such a fuel. Again, the importance of looking at

VFR efficiency asserts itself.

At an average motor octane number cf 84, current un!ead_d mogas is also

considered to be at the point of diminishing returns in VFR efficiency.

However, environmental concerns for lead emissions and the effects of lead

poisoning of catalytic converters have been determined to outweigh the

improvements in VFR efficiency, which are possible with TEL and increased

compression ratio.

Combustion chamber design as a means of increasing knock-limited power has

not received as much attention in recent year_ as has the effect of combus-

tion chamber design on exhaust emissions. Compression ratios of automo-

bile engines had been gradually reduced during the early 1970s to control

emissions of oxides of nitrogen and hydrocarbons at the expense of fuel

econo-zy. Lower peak firing pressures and temperatures during combustion

helped to reduce NOx, and higher exhaust gss temperatures because of lower

expansion ratios increased the oxidation of HC.

Recent developments have shown that additional limited economy improve-

ments are possible with combustion chamber redesign, provided exhaust

emissions are not a factor. Figure 6 shows a comparison between a standard

hemispherical combustion chamber used on today's engines and a high turbu-

lence combustion chamber (HTCC).

*PN - Performance Number. Above I00 octane number (I00% isooctane), the

anti-knock rating is called "performance number" and is indicative rf the

increase in knock-limited power obtainable compared to I00 PN gasoline.
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With a given fuel, the HTCC extends the knock-limited compression ratio
over a standard combustion chamber. With variable ignition taming t_

retard the spark during detonation-prone operating modes, the HTCC has

been demonstrated to be capable of operstin_ at 12:1 CR compared to 8.5:1

{or the standard chamber with fixed timing. Operation of the engine at

12:1 CR has been demonstrated to give an improvement in cruise fuel economy
of more than 7Z.

The higher, knock-limited coml_ression ratio of the qTCC is due to the

faster rate of combustion at the high rates of swirl and turbulence. The

compact combustion chamber increases s_irl velocity near top center of the
compression stroke because of its smaller diameter (nmller than the cyl-

inder bore) through conservation of an_ular momentum. This hlgh swirl and

turbulence is thought to reduce the r,.sidence time of the preflame front

charge as more of the mixture becomes more quickly involved in cc_bustion.

The HTCC was chosen for the Moderate Risk ?eelmo2o_jgzlglr_as being repre-

sentative of the best available solution to improvement of the

homogeneous-charge combustion system operating on existinl_ aviation

gasoline.

These limitations on efficiency improvement of the homogeneous-charge,

spark-ignition internal combustion engine have led to a search for combus-

tion systems that are insensitive to octane number.

3.3.3 Stratified-Charge EnRines

While the term stratified-charRe covers a broad range of combustion system

designs, most have in common the attempted solution to several problems of

the homogeneous-charge engine:

• Eliminat_on of end gas or reduct£on of end gas residence
time to eliminate knock.

• Stratify the fuel-air mXxture to obtain a locally able

mixture even at extremely lean overall fuel-air ratios.

• Reduce pumping losses by controlling po_r by variations

in fuel-air ratio rather than by throttling.

Of the many forms of charge stratification, the one chosen for the Xigh

Ris_ Tc._hr_2ogy Ez_gine _s an open chamber type with high-pressure, d_rect
fuel injection. The concept of charge stratification is not new, having

been described by Nicolaus Otto as e_rly as 1877 and having been reduced to

practice in the early part of this century. Th_ comercial application of

charge stratiflcatlon, however, has only recently besun.

The most notable example of an open-chamber, direct-lnjected strs.ified-

charge combustion system is the Texaco Controlled-Combust on System

(TCCS). _ts appllcation _- be_n_ d_c_cted toward automotive use to take
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advsntage of its ability to operate st high compression ratios for good

fuel economy, while st the same time run st overall lean fuel-air ratios

for low exhaust emissions. The stratification of the charge provides a
combustible mixture that is spark-ignited. The combination of high-

pressure, direct fuel injection and spark ignition have the effect of mak-

ing this form of charge stratification insensitive to both octane and

cetsne rating of the fuel. For this reason, this type of engine has been

called a "semi-diesel." It combines some characteristics of both spark-

ignition gasoline fueled engines and the compression-ignition diesels.

As can be expected, an attempt to combine the best features of two systems

often involves including some of the disadvantages of both. This type of

engine usually exhibits some degree of multiple fuel use capability, which

can be considered a synergistic result of combining the two types of com-

bustion systems. Eowever, some of the disadvantages of the diesel remain.

Because of the direct injection_ the stratlfied-charge engine, like the

diesel, is incapable of full air ut_ilization. Compared to the homogeneous-

charge engine where amximum power dictates a fuel-air ratio of about 0.076,

direct injected engines are normally limited to a fuel-air ratio of 0.055

to 0.060, beyond which incomplete combustion causes soot formation because

of poor mixing of fuel and air in the combustion chamber. The result can

be a 20 to 30% reduction in brake output for a given displacenmnt. Using a

middle distillate fuel, the stratified-charge engine i_ capable of better

air utilization than the diesel by delaying ignition to some point after

the start of injection. The power loss can be reduced to nearly 15%. As

with the diesel, stratified-charge engines exhibit a sensitivity to malad-

justment of injection timing and duration, and the relationship between

injection and spark-ignition nmat be closely controlled and must vary with

load and speed. Also, the cost of the fuel injection sy3tems are quite

high compared to low-pressure fuel injection or carburetion.

In considering the use of charge stratification for an advanced aircrgft

piston engine, priorities differ radically from those of the automotive

application. These priorities are based on differing constraints and

operational requirements. The aircraft piston engine operates at high

indicated _an-effective pressures during cruise compared to relatively

low road load conditions for autoq_t've applications. Maxi.mum power is

frequently used _n an airplane, and high power-to-weight ratios consistent
with durability at high power is required.

The case for developing a stratlfied-charge combustion system for an

advanced spark-lgnition aircraft piston engine remains a convincing one.

The risk associated with the successful development of a commercial prod-

uct suitable for use in general aviation aircraft, however, remains high.
The history of development of stratified-charge combustion systems is rife

with painfully slow e_velopment programs yielding modest gains in the

direction of merely adequate performance. Because of many large gaps in

the body of knowledge concerning combustion in piston engines in general,

and stratified engines in particular, these engine development programs

L
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have tended toward iterative cut-and-try methods without a solid founda-

tion of input from theoretical models. More often, the theoretical models

are "fine-tuned" using data from engine development programs and are of
little help in pointing the way to any substantial improvement.

The quantification of fuel atomization, f_el vaporization, turbulent dif-
fusion, chemical kinetics, and heat and momentum transfer in multidimen-

sional combustion models, although proceeding at a rapid pace, cannot be

expected to be brought to the point of making a significant impact in pre-

dicting the design of the High Risk Technology Engine combustion system
being proposed here. In the 3.5 yr set aside for applied research of the
stratified-charge combustion system, a great deal of reliance on the

experience of good design practice proven by other stratified-charge

engines viii be required. The synthesis of a co_nhustlonmodel coupled with

the hardware program is suggested, provided the model can be capable of

making a positive contribution to the combustion system defign rather than
running the engine for the sake of improving the combustioa model.

Experience has shown that one of the major problems faced in the design of

a stratified-charge engine is the coBpromise in perforunce dictated by
fixed geometries. To some extent, this problem will be lessened for an

aircraft engine, which operates most of the time at constant speed and load
within a narrow power range and without the burden of exhaust emission con-

straints. The operation of the engine at off-design points need only be

adequate, provided the design points such as full power and cruise give the
expected results.

In an open chamber, high-pressure fuel injection design, the fixed geome-

tries of concern are: nozzle type, nozzle location and penetration depth,
spray pattern (determined by nozzle hole size and location and number of

holes), spark plug type, spark plug location and penetration, combustion

chamber geometry, intake port geometry, piston clearance in :he squish

zone, compression ratio (expansion ratio), piston crown geometry, and
materials used for the piston and cylinder head. While an infinite number

of combinations and permutations exist t the experience of the many strati-

fied-charge engine development programs that are ongoing viii serve to
reduce the choices to a more manageable level. The use of fractional fac-

torial testing as a development tool will help to further minimize the

choices in optimizing the design that will initially be based on the exist-
ing HTCC combustion chamber design (Figure 6).

3.4 Turbocompounding and Turbocharging

It has long been recognized that there are benefits to be derived from

compound engine. Not only can power be derived from expansion in the work-

ing cylinder of an internal combustion engine, b, _ also from a second

thermodynamic machine using waste exhaust gas energy. In a sense, all

turbocharged engines are compound engines as veil. Exhaust gas energy is
used to drive a Brayton cycle engine (turbocharger) that has the potential

!
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of increasing the specific output of the engine. Also, in the aircraft

ap,iicstion, the curbocharger allows the engine to operate at a constant

power from sea level to high altitudes.

In a naturally aspirated engine, depending on operating condition, any-

where from 30 to 50Z of the energy of the fuel is lost in the exhaust proc-

ess. By turbocharging, part of that energy can be recovered to improve

specific output of the engine, but its effect on fuel economy may be detri-

_.ental. For s hcmsogeneous-charge _n_ine_ a lillt 1;st be placed on peak

cylinder pressures to avoid detonation. When turbocharging this type of

engine where the intention is to iaprove specific output, the compression

ratio is reduced to smlntain peak colbustion pressures below some limiting

value. Inducing compression ratio rs_uces expansion ratiot and for the

Sale peak prelsure level as the naturally aspirated version_ it reduces

indicated ther_u|l efficiency al well. An additions: negative effect of

turbocharglng is the fact that, not only is the geometric expansion ratio

reduced but also the higher pressures in the exhaust lyStel tend to reduce

the expansion pressure ratio, which further reduces fuel economy.

In turbocharging a direct-injected, stratifled-charge engine, however,

there is no octane require_nt and peak combustion pressures are limited

only by structural strength considerations and, especially for aircraft

engines, a reasonable power-to-weight ratio. Beyond a certain level,

increasing the peak pressure will only serve to increase engine weight
without a significant gain in fuel economy. The high risk technology

stratified-charge engine has a compression ratio of 12:1 while limiting

peak combustion pressures to I0,3&0 kPa (1500 psia).

An expansion turbine is not the most efficient scans of extracting waste

exhaust gas energy. There are other thermodynamic machines (bottoming

cycles) that offer greater efficiencies but with a severe penalty in

weight, size, and cost. The turbine is well-_uiCed for operation with
large quantities of gases at low pressure, and its cost, weight, and spe-

cific performance counteract its _ower efficiency.

Were it not for the desirability of -mintainin8 COnltant po_er from sea

level to high altitudes and the need for cabin pressurizatlon in an sic-

plane, the turbine work output would be put to better use by mechanically

gearing it back i:_to the output shaft of the engine. The engine would then

produce sore power on a given asount of air and fuel. The benefits of tur-

bocompounding are more directly related to fuel econowj, where turbocharg-

ing, as it is used in current aircraft piston enginest relates sore to

operational requirements.

To optimize the system for fuel econo_/, the turbocompounding power tur-

bine has been placed ahead of the turbocharger turbine to put the recovery

of exhaust pulse energy to the lost efficient use. The turbocharger tur-

bine uses the reamining exhaust energy as a _ans of driving the compressor
(Figure 7).

i
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Figures 8, 9, sn_ !O show a detailed power balance, starting wlth the

equivalent fuel pover required to produce 186 shaft kW (250 hp) for each of
three engines. The TSIO-550 engine (Figure 8) represents current tech-

nology with s brake thermal efficiency of 30.49_ (BSFC - 27l g/kW-hr) at

7620 m (25,000 ft) cruise altitude.

The Moderate Risk Technolocj_ Br_irm (Figure 9) requires 20_ less fuel

input for 186 k_ and has a 38Z brake thermal efficiency (BSFC =

28 g/kW-hr).

The Rich Risk Techr_1o<y¥ Br_irm (Figure I0) has a further 8Z reduction in

fuel input required over the Moderate Risk YecPmolog_B_glnedeslgn end has

a brake thermal efficiency of 41.39Z (BSFC = 201 g/kW-hr).

As the basic power section becomes more efficient, there is leas exhaust

gas energy available. For example, the Blgh Risk Technolog_l B_71ne has

only 63Z of the exhaust gas energy available as the current technology

engine. Yet it produces 71Z as much power through turbocharging and

turbocompounding. The result of improving the efficiency of the piston

engi_ pot_er section is the requirement for greatly improved turbocharger

and tJrbocompound power turbine efficiency.

The need for great efficiency of these components is also due to the rating

of this engine beyond the mlnimma requirement of 186 kW (250 bhp) cruise at

7620 m (25,000 ft). The engine !s designed to produce 261 kW (350 bhp)

from sea level to 7620 m and a minimum of 149 kW (200 bhp) at 10,668 m

(35,000 ft). Operation at 10,668 m means that more cabin bleed air rill

need to be supplied by the compressor. Also, rating the engine at 216 kW

at 7620 m means that a larger engine is required than one designed to oper-

ate at a maximum of 186 kW. Designing the engine for 261 kW but limiting

........... ,,.. of maximum power) permits a buiit-in

conservatism in design that extends engine life and also alloys cruise

power levels to fall into a band of engine operation where best economy
OCCURS.

To achieve a successful turbacharglng/¢urbocomp_unding system for the BIgh

Risk Technolog_ JCJ_tt_e, a great improvement will be necessary over current

turbomachinery. The table below compares the compressor performance of

three turbochargers. The first, an older model has a design point pressure

ratio of 2.7? at a speed of 70,700 RPN and an adiabatic efficiency of 55Z.

The second, representing a recent turbocharger, has a pressure ratio of

3.70 at 99,200 RPM with a 55_ efficiency. The third shows the compressor

=equirements, which will enble the Bigh R_sk _ec)molog_ 7t_r_e to operate

at 7620 m and 261 k_ and 10,668 B at 149 kW on the axhaas¢ gas energy

available downstream of the turbocompounding power turbine.
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TU_BOCHARG_B OOMPRESSOR

DESIGN POINT PERFORMANCE

OBSOLETE CuILqENT NIGN RISK

DESIGN DESIGN TECHNOLOGY REq0IREMENTS

6858 m 7620 m 7620 m/261 kW 10,668 m/149 kW

(22a500 ft) (258000 ft) (25,000 ft/35_ bhp) 35_000 fc/200 bhp

Pressure Ratio 2.77 3.70 6.0 5.2

Adiabatic $5 55 78 78

Efficiency, Z

Compressor Speed, 70,700 99,200 I00,000÷ I00,000+
RPH

Because the H_gh Risk _echnoJogy Inglne is turbocompounded, in order to

meet the light _eisht proposed for this engine design, the turbocharpr

will have to be made lighter than current designs and the entire turboccm-

poundin 8 power turbine and speed reduction system should be kept st a
power-to-velght ratio of greater than I hp/Ib at the design cruise point

(7620 m). At this operating point, where the engine shaft herself is

186 kW, the turbocompounding turbine is contributing 14.9 kW (20 bhp) to

the brake output of the engine (Figtsre I0) and should weigh 9 kg (20 Ib),

including its reduction drive.

Two emerging areas of technology can be combined to achieve the required

desi_ criteria for the turbochmrger and turbocompoundins system -

ceramics end the Nesvytio traction drive. Cerasics are proposed for both

the tu=bocharger and turbocompoundlng system turbines and Nasvytie trac-

tion drive Co speed reduction of the curbocompoundiug power turbine Co

crankshaft speed.

The application of ceramics is covered in Subsection 3.8.

The Nasvytis traction drive is proposed as • light.eight, low-cost means of

reducing the lO0,O00-plus RPN of the power turbine dovn co engine crank-

shaft speed. The drive, abeam in Figure II, consists of a eingle-stagrt

planetary roller system with tvorows of stepped planet rollers. The fixed

ratio system provides traction for the rollers in proportion to the trans-

mitted torque using a roller-ramp loading scheme. This provides for

extended life by lcmering the Hersian contact stresses at the roller

interfaces to only that value required to transmit the torque delivered

through the unit at any given level. Other traction drives are preloaded

to the level required Co carry maximum torque plus some design margin, and
thz preload remains on the rollers even when the unlt is delivering low

torque. Thus, the Nasvytis traction drive has eliminated one of the prin-

cipal reasons for the poor durability of traction drives.
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A Nasvytis traction drive designed to transmit 30 hp at an input speed of

95,000 RPM has been tested at RASALevis Research Center. It weighs 9 lb.

These units are projected to be nmnt_factured Bore cheaply than gear reduc-

tion drives because of their siarplicity and higher tolerance to dimens-
ional varisbillty. Also, for high reduction ratios where a number of gears

vould be required, the traction drive has comparable drive eff;ciency
(95Z).

Research nov under way and future programs planned in industry and Govern-

_nt are expected to bring both ceramic technology and the Hasvytis trac-

tion drive to a level of cmnercial application in timm for design of the

prototype _Lgh Risk ?c_hnolog_ _nglrm (January l, 198A).

In particular, the "Automtive Propulsion Research and Development Act of

1978" has as its sis the establishm.nt of a comprehensive program to ensure

the development of advanced autoR)tlve propulsion ayatesm within the

shortest practical tim consistent with appropriate IUhD techniques. A

part of the overall program adIinLstered by the l_Imrtmnt of Energy (1)OE)

has as its goals i_provements in transmissions end drive trains and high-

temperature ceramic coatponente for engines. Also, through the i_at Engine

Development Program managed by the Office of l'ransportation Programs of

IX)E, intense development of ceramics for advanced automotive gas turbines
is nov under way.

3.5 Engine Operational System

The engino ol_rational system are systems that directly relate to engine

combustion, e.g., fuel delivery and ignition systoles:

• Lov-Prei_ure Fuel Injection

• High-Pressure Yuel Injection
• Electronic Fuel Control

• Electronic Air Control

• Electronic Ignitivn Control.

3.5.1 Lmr-Pressure Fuel Injection

Host modern aircraft piston engines use either single-point or multipoint,

low-pressure fuel injection system. The remainder are carbureted.

The existing types of low-pressure fuel injection system now uoad in air-

craft piston engines are different in tents of the degree to which they

offer automatic air density cctpensation. The sluplest of these is the_

continuous flow syst_, which injects fuel into the intake manifold

upstreaRof each intake valve (multipolnt) in proportion to throttle posi-

t/on and engine s1_ed for naturally aopirat_d engines. For turbocharged

engines, an additionaI compensating device is added to respond to changes
in compressor discharge pressure.
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The h0mogeneous-charge Nodera_e Risk TechnolofvRrxyinewill use a continu-

ous _low system similar to that just described for turbocharged englnes , as
_hotm sche_stically in Figure 12.

3.5.2 High-Pressure Fuel Injection

The stratified-charge U_gh R_ak ?echno2og_j Rnglne will require a high-

pressure fuel injection systeD similar to that used in diesel applica-

tions. In the case of idealized stratified-charge combustion, the fuel is

injected near top cent_: on the coupression stroke and a spark iBnites the

mixture to establish a relatlvely stable and stationary burning zone. As

the combustion products are carried downstream in the direction of the air

swirl, air is being swept into the fuel spray upstream of the burning zone.

The swirl velocity in the combustion chalber is thus a critical pareJeter

in ,_.intaining a nearly stationary flame front.

Since the burning zone is rich of stoichioaetrlc, flame speed should re=_,in

high even at part load so thac with sufficiently low injection duration

(less than 30-deg of crank angle rotation), a close approximation to con-
scant volu_e combustion can be maintained.

A great deal of developlent work wilt be required to _atch injector design
co the HTCC cmabustion chamber characteristics.

3.5.3 Electronic Fuel Control

Electronic fuel control for both the homogeneous-charge engine and the

stratified-charge engine provides the advantage Of tailoring fuel delivery

requirements more closely with engine operation without the complexity of

hydromechanical systems. Of course, there must be a _echanical system for
fundamental control in the event of failure of the electronics.

Controlling or modulating the fuel flow supplied by a mechanical fuel

_elivery system using electronics gives an inherent fsilsafe capability

while still employing all of the benefits of electronic fuel control

strategies. The electronic logic unit is allowe_ to modulate fuel flow

only within the boundaries of satisfactory engine operation. Failure of

the electronics or electrical system would permit the mechanical fuel sup-

ply system to operate in a normal manner.

Figure 13, shows s schematic of such a system applied to the TC_ continuous

flow fuel injection sy_teI. In parallel with the variable orifice fuel

pump bypass (Figure 12), an additional va'iable orifice is used that is

controlled by a microcolputer in response to various input signals.

The greatest cost of adding an electronic fuel controller would be the cost

of the transducers. The automotive industry represents the larKest near-

ter_growth _arket for the electronics industry, so it is very likely that

inexpensive transducers and clever control strategies will be developed to
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reduce the overall cost of this area of advancing technology. The wide-
spread use of electronics in the automotive industry guarantees that a

solid technology base will be established on which the design of electron-

ics for an advanced spark-ignition aircraft piston engine can be based.

For the high-pressure fuel injection systemt electronic control of the

start of injection and injection duration as a function of l ensured engine

operating parameters would provide the precision and flexibility needed to
maintain optimm control of the charge stratification concept.

3.5.4 Electronic Air Control

For lean coabustion systems, an alternative to electronic fuel control has

been proposed. Normal spark-ignltion engines supply fuel in response to

change in air flow (throttle position). Stlvender (27) ham proposed an

alternate control scheme based on an engine air control (EAC) principle.

The proposed syste_ involves operator control of fuel flow and a response
provided by the electronic system that controls airflow. For lean mixture

coabustion systems, the _AC strategy is said to give imq_roved engine
response and stability vhile minimizing actuator requirements and

undesirable control interactions. Further exploration into this area of

advanced technology will be considered for appllcation to the High Risk
Technolog_ Engine design.

3.5.5 Electronic lanitlon Control

The design of an ignition systea for an advanced aircraft piston engine

must take into consideration the type of combustion system being used. For

current aircraft piston engines, dual high-tension _agnetos are used. It

is a simple, reliable system that is compact and does not require a bat-

tery. Figure 14 shows a schematic of a six-cylinder aircraft piston engine

_es-eto ign_rioB system, Tvo _ndependently driven magnetos supply spark
current to each set of two spark plugs in each cylinder. Failure of one

magneto still penaits the engine to operate, although some loss in uaxlmm

power is suffered. __.e two spark plugs in each cy|inder f_re _i_Itane-

ously and ignition ti=ing is fixed at a value that will all_-,wmaximmpower

at full throttle while avoiding detonation. Honmlly a I0 to 15Z margin in

fuel flow is provided rich of the fuei flow at which the engine would
detonate while running at uaxiima allowable cyllnder head temperature and
38°F (lOO°F) induction air temperature.

Because the mmgneto has fixed running timing, two problem must be solved.

An impulse coupling on the_agneto drive shaft solves the problem of insuf-

ficient magneto speed during engine cranking. During cranking_ the mag-

neto is restrained fro_ turning, while winding up a spring, until the

engine comes to a position near top center on the compression stroke. At

that tint, the rotor is suddenly released and rotates at a high instantane-

ous angular velocity, resultlng in a higher electromotive force to produce

a spark of sufficient intensity. This system also provides a retarded
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spark for better engine-startlng by using a separate set of breaker points
at the low engine cranking speed.

Recent work done by Bendix (28) has shown that breakerlessaagnetos can go

a long way toward improving maintenance requirements and timing shift

because of breaker point and cam follower wear, contamination, and corro-

sion. This principle has been successfully demonstrated in automotive

battery-powered _gnition systems. An additional benefit to a breakerleas

ignition system is that it is more easily adaptable to interfacing with

electronic ignition timing control.

For current naturally aspirated aircraft piston engine combustion syst_as_

there appears to be little benefit for variable ignition timing. This is

because minimum advance for best torque (NBT) timing at the fuel-air ratios

during cruise is very close to the current ignition timing setting.

For the _oderate Risk T_/'_£_ _irJe, a stepped timing ignition timing

system could be used to overcome the problem of running retarded timing in

cruise to avoid detonation at the high power settings with fixed ignition

timing. A breakerless lagneto could be designed to run at advanced timing

in cruise and retarded timing at higher powers. The step shift in timing

could be keyed to manlfold pressure. High-pressure, direct cylinder

injection will require ignition timing that can be precisely controlled in

its relationship to injection timing. For these reasons, a continuously
variable timing ignltLon system will be required for the High Risk Tech-

noloffy Engine.

An improved ignition system would have to be developed that would provide

longer service llfe, automati_ spark advance capability_ low radio fre-

quency interference (RFI)_ improved altitude performsnce_ and reduced

weight. The system would have to be independent of the aircraft electrical

system and be compatible with the mlcrocomputer-controlled engine fuel

control system.

3.6 Configuration

__e history of deve!or-_ent of the internal combustion engine encompasses a

multitude of cylinder arrangements and drive mechanisms. Only a few con-

figurations have survived in general service. Four configurations for the

advanced-technology, spark-ignition aircraft engine are discussed in this

section. These are horizontally opposed_ V_ radialt and a swashplate drive

barrel configuration (Figures 15 and 16). Among the criteria to be dis-

cussed in choosing a configuration are frontal area t weight_ balance and

vibrationt cooling_ maintenance accessibility, producibility, and cost.

3.6.1 Horizontally Opposed

Air-cooled, horlzontally-opposed-cylinder_ four-stroke cycle engines cur-

rently dominate the general aviation light aircraft category. This
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arrangement results in a short, compact, lightweight engine with easily

accessible cylinder assemblies. The horizontally opposed configuration

(ROC) might be classed as a 180 des V, except that it requires a separate

crank for each cylinder, vhich is particularly well-suited to air cooling.

The individual cranks require a relatively wide cylinder spacing, which

provides space for cooling fins between cylinders. Since aircraft drag is

directly proportional to frontal area, this is _n important consideration

in engine design. The HOC rest,l_s in one of the lowest frontal areas for a

given engine displacement of any conventional crank/connecting rod design.

For a given engine power and cylinder arrangement, the number of cylinders

to be used depends primarily on weight, frontal area, vibration, and cost.
For equal displacements, the more cylinders used the rxaller the frontal
area will be.

Neight and vibration characteristics tend to favor use of many small cylin-

ders. Since power tends to be proportional to piston area while weight i_

proportional to displacement, small cylinders tend to exhibit high power-
to-weight ratios. However, small cylinders result in lower thermal effi-

ciencies because of their higher surface-area-to-volume ratio. Numerous

cylinders result in more evenly spaced power pulses and a more balanced

crank arrangement. As the number of cylinders increases, the length of the
crankshaft increases because of the separate throws, but the number of main

support bearings also increases. The net result is that the crankshaft

weight-per-unit power decreases with the increasing number of cylinders.

Cost favors a few large cylinders because labor costs per unit exceed the

material costs. These factors limit the choice of the number of cyllnders

to 4, 6, or 8. The various crank throw arrangements using separate throws

result in zero primary and secondary shaking forces without the use of

counterweights. Four- and six-cylinder HOCs result in unbalanced yawing

moments. An eight-cylinder HOC with uniform firing pulses has a primary

unbatanced moment. The simultaneous firing of two cylinders a11ows a crank

arrangement for an eight.cylinder HOC with no unbalance. However, tor-

sional oscillations would be a problem.

3.6.2 V Configuration

The V configuration offers the advantage of running two connecting rods

per crank throw, resulting in a shorter, stiffer, lower weight crankshaft.

For V angles of 90 deg or greater, the arrangement is suitable for elth_r
air or liquid cooling. However, an air-cooled V cannot be made as short as

a liquid cooled V because of the spacing required for intercylinder cool-

ing. The V engine can be designed with the V either upright or inverted.

The inverted V is srtr_ctive for cylinder ecceeeibi!_ty end _.r_i.g rh_
propeller shaft ground clearance, but it would requir_ a dry sump lubricat-

ing system. Frontal area for the V configuration is nearly the same as for

an on_ arrenge_enttr ..... -
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For comparison of the frontal areas of different configurations, a frontal
SxXarea index (FAI) was defined based on assigning a value of 1 to the " -

cylinder hOC. t--nis index is based on geomeirlc considerations of height
S Imland width for engines of equal displacement, bore-stroke ratio, and " "-

far connecting rods: FAI = (Engine Width _ Reight)/(Six-Cyiinder HOC

Width _ Height). For the 120-deg V-6, FAI = 1.11, whereas a 90-deg V-8

has an FAI = 1.04. The FAI is representative of the frontal area of a rec-

tangular enclosure. A V engine would be better fitted with a more triangu-

lar shaped cowl. Thus, the actual frontal area for a V would be the same or
lower than for the HOC.

An eight-cylinder, 90-deg V with a counterweighted antisymmetric crank-

shaft represents an ideally balanced engine; all primary and secondary

shaking for_es and rocking motions are zero. The 120-deg V-6 has balanced

primary and secondary shaking forces, but it exhibits primary and second-

ary rocking moments.

3.6.3 Radial

The air-cooled, four-stroke cycle radial engine was once _he predominlnt

aircraft engine configuration, especially for the large military aircra£t.
The four-stroke-cycle radials require an odd number of cylinders per row

for even firing intervals and may be single- or multi-row configurations.
Each row has one master rod connected to the crankshaft, with the other

connecting rods hinged to the master. The radial arrangement results in

the lowest weight-per-unit displacement of any configuration because the
material in the crankshaft and crankcase is at a minismm for a given number

of cylinders. However, the radial configuration features a large frontal

area (Five-Cylinder FAI = 2.00, Seven-Cylinder FAI = 1.66_. Cooling drag
on the air-cooled radials was high because the required cowling shape was

not conducive to dynamic pressure recovery. Balancing of the slngle-row

radial is accomp]_shed by counterweights on the master rod, which negates

the primary shaking force and leaves only s_cond-order unbalance. Double-
row radials with 180-deg crank spacing produce unbalanced primary and sec-

ondary moments. The radial arrangement requires a dry suap lubricating

system.

3.6.4 Barrel/Swashplat e

The barrel configuration consists of reciprocating pistons parallel to the

drive shaft (Figure 16). The swashplate drive mechanism features an

inclined disc rigidly attached to the rotating shaft. Application of the

tilting-pad thrust bearing to the swashplate drive has made it a possible

competitor to the widely used crank and connecting rod mechanism. _chanl-
ca1 efficiencies of 90% have been reported for swashplate drives. A cur-

rent application of the swashplate drive concept is in autouwtive air-

conditioning colpressora. The barrel/swashplate configuration is attrac-

tive for aircraft application because of _-_ overall compactness, low
frontal area (Five-Cylinder Bundle FAI - 0._9_, and perfect dynamic

balanc_
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Perfect dynamic balance can ke achieved b,_cause the reciprocating pistons

move with simple harmonic motion. The ccanmon center of _ass of the pistons

remains fixed at the center of the mechanism for all speeds. The summation

ef the forces caused by piston accelerations is zero, Since opposing pis-

ton forces do not act along the centerline, there is an inertial couple

present. This inertial couple car be balanced by the mass of the swash-

Flate because it produces an inertial moment in the opposite direction
because of the inclination of its principal axis of mass moment of inertia

to the axis of rotation. By suitably matching the relative masse_ of the

pistons acd the swashplate, perfect dynamic balance is obtained.(29)

The compactness of the barrel arrangement necessitates liquid cooling. To

take full advantage of the available space in a barrel configuration, a

minin _m of five cylinders per bundle is desirable. Also, each cylinder

should use opposed pistons acting on a common slider. This results in a

10-cyiinder engine that is extremely compact for its displacement. Unfor-

tunately, production costs are likely to be prohibitive. The number of

separate cylinders, pistons, and valves will increase the price because

production cost for these items is labor rather than material intensive.

Also, the cost of new tooling for such a radically different design could

prooably not be justified for a low-volume m_rket such as general aviation.

3.6.5 Summary

Only one of the configurations that was considered looked promising com-

pared to the air-cooled, horizontally opposed, six-cylinder design, which

was ultimately chosen; this was the inverted V-8. The V-8 engine would be

more vibration-free than the horizontally opposed six, but from a cost and

maintainability standpoint, six cylinders are preferable. The radial

design was rejected because of its large frontal area and the swashplate

design was eliminated because of its cos_.

3.7 Cooling

Any internal combustion engine requires cooling because of structural and

lubrication limitations. Extremely low heat transfer rates would require

the surfaces in contact with the combustion gases to be near the mean work-

ing gas temperature. Since maximum combustion temperatures are of the

order of 2760°C (5000°F), developing an interns! combustion engine requir-

ing near zero cooling would be extremely difficult, if not impossible.

Lubricating conditions currently limit the maximum allowable surface tem-

peratures. When the oil film temperature exceeds about 204oc (400°F) for

petroleum-based oils, lubricating conditions deteliorate rapidly, result-

ing in increased wear or possibly seizure of the contact surfaces. Conven-

tional materials used in cylinders, pistons, and cylinder heads limit

maximum temperatures to about 316oc (600OF). Beyond this temperature, the

strength of conventional metal alloys decreases rapidly.
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required for cooling improves the installation efficiency. The result is

an increase in vehicular fuel economy.

The atmosphere serves as the heat sink to which all waste heat of an air-

craft engine is transferred. This is true whether air is used directly to

cool the engine (air-cooled) or an intermediate fluid is used to transfer
the heat from the engine to the air by means of a heat exchanger (liquid-

cooled). The general types of cooling systems that were considered for the

advanced-technology spark-lgnition aircraft piston engine are:

• Direct Air Cooling

• Liquid Cooling
s Air/Liquid Cooling (Combination).

Cooling subsystems to be considered for use with any of the above systems

include thermal barriers, such as liners or coatings, and air-flow aug-

mentors such as fans or exhaust ejectors.

Some of the important criteria to consider in comparing aircraft engine

cooling systems are cooling drag power, system weight, reliability, main-

tenance, and cost.

3.7.i Air Cooling

Th_ funda_ntal a_va_ta_e of air cooli=$ over liquid cooling is thv i_er-

eat simplicity and reliability of the system. Since heat transfer occurs

by direct convection from the cylinder, there is nothing to fail; no main-

tenance required or parts to replace.

The temperature difference between the cylinder and cooling air is much

greater for an air-cooled engine (_200°C) than is the corresponding tem-

perature difference between the heat exchanger of a liquid-cooled engine

and the cooling air (_83°C). This higher operating temperature differen-

tial for the heat transfer process results in several beneficial effects.

An air-cooled engine incurs lower heat losses than an equal-dlsplacement,

liquid-cooled engine because of the lower temperature difference between

combustion gases and the cylinder. This results in better indicated spe-

cific fuel consumption. Because of the higher temperature gradient, less

surface area and cooling airflow is required for heat transfer for air-

cooled cylinders than for the radiator of a liquid-cooled engine. Hot

weather pena]izes a llquid-cooled installation more than an alr-cooled

engine. For example, a 22°C (40°F) increase in cooling air temperature
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reduces the heat trs-sfer temperature gradient of a liquid-cooled instal-

lation about 27% (83 to 61°C). The same change for an air-cooled engine

reduces the thermal difference by only 11% (200 to 178oc). Likewise, an

air-cooled aircraft engine benefits more from reduced ambient temperatures

at altitude than does a liquid-cooled engine.

The cylinder of an air-cooled engine warms up more rapidly because it is

surrounded by a smaller quantity of meterial. This has a favorable influ-

ence on the wear of cylinders. Maximum wear occurs immediately after

starting when the cylinder walls are cold and lubrication is inadequate.

Corrosion develops when combustion products condense on cold cylinder

walls and attack the bearing surface. This critical period is considerably

shortened in an air-cooled engine, resulting in reduced cylinder wear com-

pared to a liquid-cooled engine.

The higher mean cylinder temperature of an air-cooled engine prevents

excessive buildup of carbon deposits on the surfaces surroullding the com-

bustion chamber. These deposits reduce volumetric efficiency and can

induce preignition because of local hot spots. Lack of carbon buildup con-

tributes to the sustained performance of air-cooled engines.

The air-cooled engine design requires a unit cylinder construction that

can advantageously be combined into engine units with varying number of

cylinders. Since most of the component parts that are subject to wear are

identical for a11 engines, a smJller stock of spare parts is required.

Unit cylinder construction allows rapid and less expensive repairs. A dam-

aged cylinder can be individually dismantled and replaced. Similar damage

to a liquid-cooled engine without separate cylinders would require

replacement of the entire engine block or crankcase.

In designing an air-cooled engine installation, there are no limitations

on engine position because of the danger of vapor pockets forming and

interrupting coolant circulation. Installing or removing an air-cooied

engine from an air_raft is easier than for a liquid-cooled engine since
there are no coolant hoses and no radiator.

Although there are significant advantages to air-cooled engines, there are

shortcomings. The external surface area of a cylinder places a limitation
on the effective fin area that can be used. This limits the heat transfer

that can be dissipated at a given airflow rate. Liquid-cooled installa-

tions are not so limited, provided a larger heat exchanger and coolant cir-

culating pump can be installed. However, in current air-cooled aircraft

engines, available fin area has not been a critical problem. Absence of a

water jacket surrounding the cylinders means that air-cooled engines are

noisier. Cylinder temperature variations cause clearance variations
because of differential thermal expansion. Special attention must be paid

to piston and ring clearances. Valve clearance is controlled through the

_se of hydraulic tappets. The necessity of a separate oil cooler might be
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considered • disadvantage. Coolin$ of the oil is important for high spe-

cific output engines. Water-cooled engines cool the oil by extending the

water jacket the entire length of the cylinder, with the resulting unde-
sirable fuel and combustion product condensation on the cylinder
walls,(30)

3.7.2 Liquid CoolinR

The utility of liquid cooling lies with the flexibility of s remotely

mounted heat exchanger whose size and location are independent of cylinder

size or _pacing. With no cooling airflow limitations on cylinder spacin_
or orientation, the liquid-cooled engine can be made sore compact then an

air-cooled engine can be sumdesore compact than an air-cooled engine. How-

ever, the totaZ installation, including the radiator, may not be any

smaller. Optisom sized radiators can be used in installations with differ-

ent power or altitude ratings, whereas a family of air-cooled engines is

limited to the finning on the basic unit cylinder. If the redimtor is

sized to handle the full-power heat rejection under climb conditions at

best power fuel flows, then the fuel consumption will be lower than for an

• it-cooled engine, which usually requires rich fuel settings for cooling

st takeoff. A properly designed liquid-coolant jacket produces a more uni-

form cylinder temper•Cure distribution, which means lover thermal
stresses. LocsI hot spots in the combustion chamber of a liquid-cooled

engine produce nucleate boiling of the coolant if the temperature is high

enough. The latent heat of vaporisation of the coolant is used to achieve

the high heat flux. Liquid cooling usually results in lower combustion

chamber and exhaust valve temperatures that can reduce detonation
tendencies.

Althou_h liquid cooling has some advmntages, especially for closely spaced

cylinders and high heat flux_ it also has some serious drawbacks. These

are principally in the are• of system complexity, reliability, and

required uaintenance. A liquid-cooled engine requires s coolant circulat-

ing pump, a radiator, hoses, and a thermostat. Furthermore, an aircraft

engine liquid coollng system must be pressurised to prevent coolant boil-

ing at altitude and a header tank will be required to prevent cnolant loss

resultin s from thermal expansion at high coolant temperatures. Pressur-

ized coolant systems require a safety valve in the radiator cap. The moat
commonly used coolant is water, which has a high specific heat, mixed with

ethylene-glycol as an anti-freeze to lower the free, in E temperature. Sta-
tistical data indicQte• that 20Z of all automotive engine failures involve

the water cooling system. This is not surprising considering the various

equipment problems that can occur. Sealing of joints in • pressurized

radiator is difficult. Water pump seals tend to leak with age. Hoses con-

netting the engine must be flexibIe and thls presents a leakage risk. In

addition, hoses must be periodically replaced to prevent splitting caused

by aging. Scale deposits in the radiator adversely effect heat transfer
and use of cleaning agents tends to expose minute fissures causing leaks.

Failure of the control thermostat is another potential problem. Thus, a

liquid-cooled aircraft engine will require more =u, intenance to meet avia-
tion safety standards than its air-cooled equivalent.
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Other disadvantages of liquid-cooled engines include increased cylinder

wear caused by condensation corrosion and poor lubrication following a

cold start and a larger reduction in system cooling capacity in hot

weather. The maximum operating temperature of the radiator of a liquid-

cooled engine is limited by the boiling point of the coolant. Since the

heat exchanger temperature cannot be increased to offset the reduced ther-

mal gradient in hot weather, the radiator surface ares must be sized for

the worst condition. The higher temperature of sir-cooled cylinders

results in easier hot weather cooling and relatively better performance at

cooler temperatures and higher altitu_es.

Unless a liquid-cooled engine can produce significant savings in weight,

cost, or cooling drag, the reliability and maintenance requirements obvi-

ously favor air cooling.

3.7.3 Cooling Power Comparison

A generalized comparison of the cooling power required for an air-cooled

versus a liquid-cooled engine installation is difficult because of the

large number of variables involved. The cooling airflow in an aircraft is

produced by virtue of the forward motion of the vehicle. The flow limita-

tion for a finned cylinder or a radiator is the pressure drop, which cannot

exceed the dynamic pressure recovered by the ducting system. Therefore,

any comparisons should be made at constant pressure drop. Since the radia-

tor must operate at a lower thermal gradient, it will require more surface

area than the finned cylinders. Using a water-ethylene glycol mixture as

the coolant limits the heat exchanger temperature to about 104oc (220oF),
whereas alr-cooled cylinder temperatures average about 221°C (430OF).

When equal film heat transfer coefficients are assumed, the radiator sur-

face area would have to be 2.4 timas the cylinder finning area.

A comparison of cooling power between a 224 kW (300 hp), air-cooled air-

craft piston engine at sea level and an equivalent liquid-cooled engine

showed the cooling power required by th_ liquid-cooled engine to be 30%

higher. The coolant-pump power accounted for most of this excess. Com-

pared to total cooling drag power for the engine installation, which

includes inlet and outlet losses, the cooling power for the engine alone is

small, so that the total power losses associated with cooling either air-
or liquid-cooled engines is nearly the same. Considering reliability and

maintenance of a liquid-cooled engine, the conclusion is that air cooling

is the best choice for the configuration chosen - the horizontally

opposed, six-cylinder engine.

3.8 Materials

The use of advanced materials was considered from the standpoint of we:ght

reduction and increased durability. Table VI compares three engines where

the weight of each is divided among the materials it contains. Th_ first

engine is a T$I0-550 engine representing the current level of technology.
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It contsina 3.6 kg (8 Ib) of miscellaneous mumterials such as plastic, rub-

ber, and copper 151 kg (332 lb) of steel and Ill kg (245 lb) of aluminum,

for a total weight of 265 kg (585 lb). The Moderate Risk ?echnolog_ Engine

contains only 115 kg (253 lb) of steel and 98 kg (215 lb) of aluminum,
whereas 4.5 kg (10 lb) of advanced materials have been added for a total

weight of 220 kg (485 lb), which is s weight reduction of 17Z over the cur-

rent engine. The reduction in use of steel and aluminum in this engine is
brought about primarily by the more judicious use of these materials.

In the High Risk Techrwlog F Engine, there are only 36 kg (80 lb) of steel,
primarily in the crankshaft, reduction gears, cylinders, and exhaust

valves. The use of aluminum has been reduced somewhat, and a total of

54 kg (119 lb) of advanced materials are used for an engine weight of

184 kg (405 lb), a 31Z improvement over the current engine. In this

engine, the greatest part of the advanced material weight is tltanius, with
a small amount of reinforced plastic and ceramics.

3.8.1 Titanium

Titanium is one of the most abundant metals to be found on Earth. blhile

titanium is not a rare metal, it is very costly to produce. The problem is

that it is not usually found in great quantity in any one location, but is

relatively evenly distributed over the Earth. Another problem is that it

takes 13 times as much energy to produce a pound of titanium frumore as it

does to make a pound of steel. An advancement in titanium production end

metallurgy would permit an overall saving in energy consumption to be real-

ized. The question is whether the fuel saved by reducing the weight of the

engine by 31Z will be overcome by the energy used to produce the titanium
in the first place.

Researchers view powder metallurgy as one of the most promising Mane of
reducing the cost of titanium products. At the recent International Tita-

nium Conference in Japan, research papers reported that by compacting

titanium powder into near final shape by hot isostatic pressing (HIPing) ,

large cost savings were possible over the conventional practices of forg-

ing and machining. The powder is produced directly from titanium sponge,

which bypasses the expensive, scrap-intensive process ordlnarily used to
convert sponge into mill products such as bar, sheet, or plate.

Also, U.S. researchers are working on the production of ultra-stiff metal

matrices consisting of titanium reinforced with sillcon carbide fibers.

The cost of titanium has dropped steadily on a volumetric basis compared to
equal volumes of steel and aluminum. In the mid 1950s, titanium cost 110

times as much as steel and 35 times as _ch as aluminum. Projected costs

per unit volume in 1980 show that titanium will cost only I0 to 15 times as

much as either steel or aluminum, and powdered metallurgy technology
should reduce that relative cost considerably as the cost of energy
increases.
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The use of titanium in an advanced-technology engine need not be limited to

structural applicaticns, but it can also be used in intake valves and valve

springs, as well as in connecting rods, nuts, and bolts.

3.8.2 Pe inforced Plastics

Although there are many forms of reinforced plastics available today, the

highest performance combinations are matrices of graphite and epoxy.
Although epoxy has a rather low elastic modulus (6.9 _ 10 _' kPa), some

forms of carbon fiber have a modulus exceeding that of steel (483

10 ° kPa). The combination of graphite and epoxy can have a modulus close

to that of steel while weighing only one-fourth as much.

Many parts require a material with superior stiffness properties in only
one or two modes of flexure. Reinforced plastics can reduce the welght of

such parts by orienting the fibers in the proper direction to take the

load. A longitudinal member with only bending moments applied would have

the fibers placed longitudinally if no requirement for torsional rigidity
existed for the part. Basically, fiber orientation in a well-designed part

will always be in the direction of the principal stress.

Chopped fibers can be mixed with thermoplastic materials for injection

molding to produce parts with omnidirectional properties, although their

strength would be reduced accordingly.

Because of the low volume involved in the manufacture of general aviation

piston engines, graphite-reinforced plastic (CRP) parts may be rather

costly to produce compared to the weight savings achieved. The items that

could be produced from GRP are not of sufficient weight to effect a large
percentage saving in overall engine weight. Items considered for fabrica-

tion from GRP are: pushrods, rocker arms, accessory brackets, and control
rods.

3.8.3 Ceramics

The application of ceramics to expansion turbines in place of ductile

superalloy metals has been studied for many years. The principal diffi-

culty lies in the fact that ceramics fail catastrophically because of their

inherent brittleness, _ereas _uctile metals yield when they are over-
stressed. The direct s,bstitu ion of ceramics for metals has met with

limited success in the past in application where extremes of mechanical,

thermal, and impact stresses are found, t_e driving force for ceramics in

turbomachinery is their high-temperatu e capability, light weight, low

cost, and that no rare metals of strategic importance are required.

Ceramics exhibit excellent corrosion and erosion resistance. The proposed

TCH High Risk Tec_log N gr_ine offers a promising candidate for applica-

tion of ceramics to rotating turbomachinery c_ponents. The high expan-

sion ratio of the stratified-charge combustion system has lower exhaust

gas temperatures so the ceramic material will not be operating against the
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limits of creep (1200°C) and strength (1400°C) required by turbine engine

applications. Also, the catastrophic failur_ of a turbocharger or turbo-

compounding power turbine, if proper containment is provided, would not

necessarily result in engine failure. The engine would st_11 be capable o_

operation in a naturally aspirated mode at lower altitudes. A radial
inflow turbine Heel made from single-phase slpha silicon carbide by a

process developed by the Carborundum Company ,,i_ht weigh only 50Z of an

existing superalloy wheel and would not exhibit any loss in strength at a

temperature as high as 1650°C. This weight reduction could mean a turbo-

charger b_ighing only 75Z of current designs if contairment requirements

are fou-_ to be less stringent, with ceramics. About 60Z of the total

weight of a typical turbocharger is in the turbine housing, which is

designed for containment should the turbine impeller fail.

Figure 17 shows an alpha silicon carbide turbine wheel manufactured on an

experimertai basis by the Carborundum Company for a Volkswagen automotive

application. Also shown is a scroll housing made of the ceramic material

that was used to demonstrate the complexity o_ parts that can be made. The

scroll housing vas intended for automotive turbine engine hot section

application. The turbine wheel has been run cold in a vacuum at up to

120,000 RPN and has also been operated in an automotive turbocharger.

Other applications for ceramics are in the Naavytis Traction Drive (see

Section 3.4), valve train tappets, pushrod ends, and piston wrist pins.

The superior c_efficient of friction of lubricated ceramic surfaces run-

ning against steel Imy provide soQe reduction in engine fr_ction losses.

3.8.4 5um|ury

The application of new materials to existing aircraft piston engines by the

process of substitution, as has been done in the past, is rather limited.

With the design of an all-new engine, advanced-technology mmterials such

as titanium, reinforced plastics, an_ ceramics can be integrated into a

complete compatible package_ere best use of their properties can be made.

Weight savings in one part can usually be propagated throughout the entire

engine design and weight saved in the engine can reduce the entire airframe
structure weight. The resultant payback is an improvement in the utility

of the aircraft by allowing it to carry more payload or more fuel
(increased range) or to fly at faster cruise speeds on the same amount of
fuel.

3.9 Msnufacturin&

In 1979, Teledyne Continental Motors (TCH) manufactured about 8300 new

engines for the original equipment manufacturer (OZM) mmrket, 400 new

engines for after1_rket sales as replacements for engines in existing air-

_rames, and 2100 factory rebuilt engines for the afteramrket.

On the average, each of the 10,800 engines produced required 65 to 75 man-

hours of labor. About 60g of the people involved directly in mmnufacture
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of the engines perform manual tasks and the re-u.inder operate machine

cools, from drill presses to numerically centrolled (NC) tape m,.chines. At

the 1979 race, TCH produced an average of about 44 engines each 8-hr work-

ing day.

By comparison, the highly automated production plants of the U.S. automo-

tive industry produce about 10 million engines annually.

A recent Delphi forecast sponsored by the Society of Ranufacturing Engi-
neers has distilled the opinions of 105 tmnufacturing experts in the U.S.,

Great Britain, and Japan to predict the ,_doption of computer-aided manu-

facturing (CAN) over the next 20 yr.

The results of the study showed that by 1990_ 25Z of all small factories

will use some kind of CAM and by 1995, 20Z of small batch manufacturers

vi!l use robots for automatic assembly.

As a result of this predicted trend, it seems inevitable that an advanced,

spa_-ignition aircraft piston engine intended for production in the early

part of the next decade could more profitably be manufactured using a

greater degree of automation.

In fact, the trend in _he industry is in that direction with the greater

use of NC machines in production and computer-controlled production test

cells that run the engines through their initial green run and performance

qualification tests.

3.10 Engine Auxiliary Systems

The auxiliary systems are those that do not directly relate to engine func-

tion but are nevertheless required as s part of an engine installed in an
airframe.

3.10. I Single-Lever Control

In today's air traffic control system, the increasing burden placed on the

pilot has detmnded a higher level of pilot proficiency, increasing the need

for improved aircraft systems that ease pilot workload.

In the past 5 yr, total pilot certificates increased by 24%, while pilots

holding instrument ratings increased by almost 30Z. Forecasts by the Fed-

eral Aviation Administration (FAA) predicted that over the next 10 yr,

total pilot certificates are expected to increase by 22g, while the number

of pilots with instrument ratings will increase by 53Z to take advantage of

£ull use of the B.a. airspace system. Recently proposed rulemaking by the

FkA, which has the effect of excluding visual flight rules traffic from
flying into certain airspace, may further increase the growth rate of

instrument-rated pilots.
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The denttnd for improved systems to ease pilot workload has largely been

made through improved avionics. Also, little attention has been paid to

improving pilot-to-engine interface, _hich remains very much as it has

always been in the three-level engine/propeller control system.

Recent cooperation between Beech Aircraft, Woodward Governor, and TC._ has
led to the development of a so-called "single-lever control" which, using a

servomechanical system, provides the pilot with control of engine throt-

tle, propeller RPM, and fuel mixture ratio through the use of a single

lever. Rather than having the choice of a variety of propeller RPM/mani-

fold pressure combinations, the single-_ever control has a mechanical

linkage connecting the propeller governor and throttle with an override to

allow propeller governor cycling as part of the preflight engine check pro-
cedure. A mixture control override lever also exists with detents to allow

the pilot to select '_IANU?tL RICH," "AUTOMATIC," "NANUAL LEAN," and "IDLE

CUT-OFF" posit ions.

To activate the system, the pilot sets the mixture con,to _ lever to the

"AUTONATIC" detent and sel_ts an engine speed colpatible w_'h the power

level he desires. The system autmsatically regulates manifo,d pressure

and fuel flow, maintaining constant smnifold pressure up to critical alti-

tude (wide open throttle) for the naturally aspirated engine, while

attempting to maintain constant fuel-alr rac_o at higher altitudes.

The system has been compared to the automatic transmission in an automobile

in terms of reducing workload. The comparison is an apt one, but the time

when there is a heavy cockpit workload is much more intense and of longer

duration than would ever be encountered by the driver of a car.

With the rapid growth of electronics, a logical extepsion of the Woodward

system would be an electronic control that would integrate all the

engine/propeller control functions into a single-lever package. The task

of controlling the propeller governor, _nifold pressur#, and fuel £1ow

with a servoelectrical system that, in turn, is controlled by a

microcomputer is technically a fairly straightforward idea.

The idea of combining all engine control functions into a common package

seems technologically desirable. The success of such a system would depend

on the ability to design a failsoft system that would rely either on a

mechanical backup or be redundant in design. The ultimate system would be

able to control the engine to an optimum schedule of propeller RPM, mani-

fold pressure, fuel flow, and ignition timing, which would maximize per-

formance fuel economy to the greatest extent.

Such a system would seem to have a positive effect on aircraft safety,

while product liability implications of an unpredetermined failure mode

would remain a serious concern. An electronic assembly containing a rela-

tively modest count of 100 parts, each 99.9Z reliable, would suffer an

41



in-use failure rate of nearly 10%. Th, is is clearly an undesirable situa-

tion for an aircraft :ontrol system, even if provisions are made for a

failsafe or failsoft backup.

Lacking a high level of reliability, an electronic system could be designed

that would diagnose problems within itself and switch to alLtrnate cir-

cuitry until repair could be done on the primary circuit. This method of

failsafe operation seems to be a promising trend, vhich can rely on the

enormous capacity available with modern large-scale integrated circuits.

The cost burden of the concept of electronic engine/propeller control

would be mainly in the transducers, which are required to supply signals

for the system. However, the rapid development of Iov-cost, reliable

transducers is expected as a result of automotive electronic research.

3.10.2 Electric Power Generation

While engine operation does not depend on the aircraft electrical system,

the engine is required to drive an alternator that supplies power for the

aircraft. The engine electrical system consists of a 12- or 24-V supply
chat provides power for items such as the starter motor, external and

internal lights, gages, electrically operated flaps and landing gear, fuel

boost pump, wing de-ice system, plus all the required avionics. Usually,
provisions are made for excluding the alternator from the system with a

manu_i switch, and in case of battery failure the electrical system will

operate adequately on the alternator alone. Electronic systems are pro-

tected by isolating them on a separate bus bar so that they can be pro-

tccted form harmful transient voltage excursions.

A typical aircraft alternator is similar to its automotive counterpart.

The rotor magnets are energized by the battery during the startup period

and then in operation are self-energlzed by rectified dc output of the

alternator. Should the battery not supply sufficient power on startup, the

alternator wit1 not function because there will not be enough magnetic

field strength in the rotor to produce output tc sustain operation.

Recent improvements have included small permanent magnets in between the

electromagnetic pole pieces, which are capable of producing enough alter-

nator output at low starting speeds to energize the alternator until a

stable operating speed is reached.

An area of advarced technology in alternator development that may prove

valuable from the weight standpoint is the high-speed alternator. Current

aircraft alternators weigh about 8 kg (18 lb) and operate at speeds below
8,000 RPN. High-speed, brushlesa alternators, developed primarily for

military aircraft applications veigh only 4 kg (9 lb) while turning at

15,000 RPM. Current alternators a_e gear-driven at about three times
engine speed, so provisions for driving a high-speed alternator at six
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times engine speed would not incur any additional weight penalty. In addi-

tion, the brushless feature would improve alternator reliability. The

only problem area in adopting this technology to the aircraft piston engine

is cost. Indications are that the automotive industry is working to

improve the cost factor, much of which can be reduced by high-volume

production.

A recent patent assigned to Si1_onds Precision (No. 4,027,229 - May 31,

1977) has led to the development of a permanent m_gnet alternator (PMA)

that can be regulated. The rotor section consists of a hub, soft iron

wedges, and samarium/cobalt (33%/67%) permanent magnets to form a multi-

pole rotor. The self-regulation is achieved by a metallic sleeve that

trims the alternator output to the load, greatly reducing the need for

external regulation. The brushless feature and high-speed operation made

it a small, lightweight design with excellent reliability. Major efforts

at cost reduction includes the development of high-power permanent magnets

made of less expensive materials than cobalt and samarium, which are able

to maintain magnetic properties with time and temperature.

The combination of a starter motor/generator is attractive fro_ the stand-

point of weight and size reduction. The concept involves the use of one dc

electric motor to start the engine, which is subsequently used as a genera-

tor. One problem with this idea is that a variable or two-speed drive

would be required as the torque and that speed requirements for a starter
motor require a large gear reduction (25 to 55:1), whereas a generator does

not require ss much reduction to the crankshaft (3 to 6:1). Compound

epicyclic gearing could provide the high reduction for starting while giv-
ing a lower reduction for running by means of a centrifugal switch operat-

ing a magnetic clutch. No such 2ystem is known to exist in a form availa-

ble for aircraft piston engine use.

Starter-generators are a co_on practice for turbojet and turboprop
engines, however, since starting speed and generating speed requirements

are in an overlapping range. Also, in the starting mode, at low speed, the

high starting torque characteristic is provided by an extra series field

winding supplied for this purpose. These combined units, however, cost up

to 10 times the cost of separate starter and alternator units derived from

automotive designs and provide little weight advantage.

3.10.3 Engine-Driven Air Conditioning

Engine-driven air conditioning is an optional feature on many twin-englne

cabin airplanes. Its function is mainly used for passenger comfort on the

ground and at low altitudes. At higher cruising altitudes, air condition-

ing is not required because of the lower temperature air available for

cabin pressurization and ventilation.

The air conditioning units currently used are similar to the freon :ys_ems

used in automobiles. While these systems are low in cost and are effl-

cient, the ROVAC-type of system might be explored as a possible alterna-

tive. The ROVAC system uses a rotary vane compressor to compress air,
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which then flows through an air-to-air heat exchanger and is expanded in

the opposite side of the rotary compressor to recover some of the energy
used in compression. This system is said to be lighter in weight while

providing immediate cooling capability, which would seem to be advanta-

geous for aircraft applications.

3.li Lubricants

The reliability of the modern aircraft piston engines depends greatly on

the quality of the fuels and lubricants it uses. Lubricants for the air-

craft piston engine are specially formulated to meet the needs of this

class of engine.

The lubricating oils used in aircraft piston engines must be capable of

doing many tasks:

. Lubrication Reduce resistance to relative motion between

two surfaces:

- Boundary Lubrication - Partial surface-
to-surface contact

- Fluid Film Lubrication - No surface-to-

surface contact

• Cooling Removal of heat from various engine parts:

- Cooling of bearings and gears during the

lubrication process

- Cooling of pistons and cylinder walls

• Actuation Used as a hydraulic fluid for actuation:

- Propeller governor uses oil to control

propeller speed

Oil used to control turbocharger waste-

gate valve for control of induction air

absolute pressure.

These oils are mineral-based, ashless dispersant oils with viscosity

grades ranging from SAE 30 to SAE 50. The new multiviscosity oils recently

approved (SAE 15W-_0, SAE 20W-50) contain viscosity improving additives

(e.g., butadiene-styrene copolymer), which, when mixed with an SAE 15 or

SAE 20 base oil stock, raises the high-temperature viscosity (lO0°C) to

that of an SAE 50 oil. This additive is highly resiacan_ (,:_ p_t:_,e_

shear loss of viscosity and is contained in the first multiviscosity grade

oil approved for all-weather use in modern aircraft piston engines.

a
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Figure 18 shows roughly the effect a viscosity _n_ex improver has on SAE 20
base stock to convert it to an SAE 20W-50 oil. The use of multigrade oil

means that the same oil can be used from hot to cold weather with improved

cold cranking, while maintaining sufficient viscosity at high

temperatures.

While paraffin-base lubricating oils have viscosity that is independent of

shear rate (Newtonian), the polymer-thickened oils behave in a different

manner in that they exhibit a distinct non-Newtonian behavior called pseu-

doplasticity. Specifically, the apparent viscosity decreases with

increasing shear rate. This temporary shear Loss is an important consid-

eration in thp use of multiviscosity grade oils.

Although --,ltiviscosity grade oils have been used for years in automo-

biles, the higher temperatures and loads in aircraft piston engines and the

requirement for an sshless oil have led to the need for a special formu-

lation for aircraft piston engines. The development of these oils is

expected to continue with more manufacturers submitting oils foz
certification.

Normml engine maintenance procedures require oil and filter changes at

50-hr intervals, or if a full flow filter is used, a filter change at 50 hr

and oil change at 100hr. Also, oll analysis is a common practice to help

detect incipient engine damage.

Synthetic lubricants have been used for many years in turbine engines and

automatic transmissions. More recently, they have been marketed coumer-

clally for use in autolwbile engines. They provide hi_h-temperature sta-

bility and ,ow pour point, and their lower viscosity reduces engine fric-

tion. Current synthetics with viscosity in the SAE 10W-40 range are

unsuitable for aircraft piston engine use except perhaps during cold

weather operation.

There have been claims that synthetics can reduce engine fuel consumptlon_

but counter-claims say that a reduced viscosity mineral-based oil will do
the same. Extended oil drain intervals are also claimed for synthetics,

but the fact remains that for aircraft piston engines an extended oil drain

period is not desirable because of the more rigid maintenance require-

manta. Th_ synthetic oils still contain suspended particles from combus-

tion blo_?oy gases, and the additive package (detergents, dispersants, rust

inhibitors, oxidation inhibltors, antifoming agents) can still become

depleted.

Ester-base synthetics can be obtained from agricultural products, a renew-
able mource, but process energy required to produce them is double that for
a mineral-based oil.

Conventional mineral-base, straight-grade oil and the new nultigrade oils

will be adequate for an advanced, spark-ignition aircraft piston engin_
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design. No distinct advantage is recognized with synthetic lubricants for

aircraft piston engine use, and no area of developing technology appears
that would replace mineral-base oil technology.
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SECTION 4.G

ENGINE DESIGN

4.1 Design Specification Goals

At the outset of the contract, certain specifications were set as goals for

the design phase. They are listed below:

@ Two engines will be designed to meet the requirements for nominal

149 and 298 kW (200 and 400 hp) ratings with geometric scaling
factors to allow each engine to be scaled over a range of +25% in

power.

• Engine: performance and efficiency improvement targets were

specified as follows:

- BSFC less than 231 g/kW-hr (0.38 Ibm/hp-hr) at 75%

cruise power

- Specific weight less than 0.61 kg/kW (1.0 lbm/hp)

- Cooling airflow times pressure drop factor reduced by
50Z

• The engine should be capable of operating on one or more

alternative fuels other than 100 octane avgas.

• The exhaust emissions must be below the 1980 EPA
Standards.

Engine direct manufacturing costs should be comparable to

or less than current spark-ignition aircraft piston

engines.

than for current aircraft engines.

During the study, some of these goal• were modified to reflect new informa-

tion or a more consistent approach among the other competing engine designs
(diesel and rotary).

It was decided that one colmn power specification be set for all of the

engines. One engine design was selected instead of two_. It must be capa-

ble of continuous operation in cruise at 186 kN (250 hp) at an altitude of
7620 m (25,000 ft).

Also, no consideration wa_ given to analytically predicting exhaust emis-

sions because the 1980 EPA Standaras were c_ncelled for aircraft piston
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,,nginos. the carbon monoxid,, emissions could have been predicted fairly

t'asilv, and for the liagh Risk 7'echncloqtl Engine, they would have been veil
below the standard because of the stratified-charge combustion system.

Likewise, hydrocarbon emissions would be tow for this engine because of

lean operation. In all likelihood, emissions of oxides of nitrogen would
h,_ve also been within the standards for the Hlqh Risk Tech/lolog_ ffn<yine but

the ,_oder,J[e Risk T_'hr_logy Erlgir_, because of its homogeneous-charge

t-omhustion system, would have exceeded the NOx standards.

Th,. specific weight goal of 0.61 kg/kW (1.0 lbm/hp) cannot be set with any
reasonabl,,, cost-effective technologies. The Righ Rlsk Tec_unology Engine

._pproaches this goal with a specific weight of 0.71 kg/kW (I.16 IbB/hp).

The tradeoff is really a balance among weight, coat, fuel economy, and

engine life. Fuel economy being the important factor t a high-speed engine

as a means to reduce specific weight was precluded because of dispropor-

tionately increased friction. A high-speed engine would have also tended
to increase the wear rate and reduce the life of critical engine parts.

The goal of cooling drag reduction was Bat for the Sigh Risk ?echnolog_3

_nqine. The cooling drag was reduced by 52% compared to a competitive cur-

rent technology engine (see Section 5.0, "Engine/Airframe Integration").

The multifuel capability requirement is addressed to some extent by the

stratifie,t-charge combustion system of the High Risk Technoloq V Engine.

The degree to which it will be capable of operating successfully on gaso-
line as welt as distillate fuels is, of courses unknown. In theory, the

iack of octane or octane requirement for the spark-ignition, high-pressure

direct injection would permit operation on t wide variety of fuels. Prac-

tical problems, however, may preclude operation on fuels other than the
,-ommt,rcial kerosene-base jet fuel for which the engine would be designed.

Variations in lubricitv, viscosity, density, and volatility of various
fuels alter the injection characterltties and affect fuel pump i,,ear.

As far as the manufacturing cost criteria goes, it would be difficult to
offset the investment in new machine tools with a more efficient manufac-

turing and assembly of the engines for the very low volume of parts pro-

duced annually by the industry.

Life-cycle cost (LCC) for the advanced-technology engines can, however, be

improved to offset an increase in the initial price because of higher manu-

facturing coats and certification coats. The components contributing to

reduced LCC are fuel economy, time between overhaul (T_O), overhaul coat,

aircraft use rate, inspection, and Baintenan _. During th_ design phase,

these components stere kept in mind with lml emphasis on the driving fac-

tors of fuel economy and TBO. The LCC of the engine by itself Bay not be

indicative of overall LCC of the airplane. There are other driving factors

in LCC that are independent of engine design such at hangar rental, insur-

ance, and airfraBa LCC. The LCC discussion appears in Section 5.0,

"Engine/Airframe Integration." Briefly, single-engine airplanes using the
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_oder•te Risk T_hnolo_y Enqinmmnd High Risk TechnoloqyBngin_had a 3.!6Z

and 6.21_ increase in acquisition cost, respectively, ore= • baseline cur-
rent-t_chnolosy airplane. Their direct operating costs "_X)C) per hour
were lit and 15Z lower. The LCC then could be lower for the advanced

engines, depending on use, especially _d_en considering the increasinR

price of fuel.

4.2 Engine SizinR

Although the require_nt set forth at the beginning of th- contrmct was for

an engine thmt would produce •t le•mt 186 kW (250 hp) at 7620 m

(25,000 ft), it is coQm0n practice to de•ign the engine to produce st least

one-third mk_re power than its _ximum cruise power rating. The tradeoff is

to gain takeoff and climb performance as well •m i_roved fuel economy and

increased engine life •t the expense of engine sis• and weight. As such,

the maximum power was rather •rbitr•rily selected •• 261 kW (350 hp). The

luximum engine speed wms kept at a level slightly helm, that of current

technology geared engines (3200 RPH versus 3400 RPM). This allowed a

_airly compact design without sacrificing fuel econoly becmuse of friction
at higher engine rotational speeds.

The engine displacement turned out to be 6.88 liters (420 in _) ms the

result of • rather complex iter•tive procedure. Limits on peak cylinder

pressure were set at B274 kP• (1200 psia) for the tloderatm Risk _echnology

gngine and 10,342 kPa (1500 psia) for the Mifh Risk _echnolo_j_gngine. The

bore-to-,troke rmtio for both engines was chosen to be 1.25 •s m compromise

among the desired low man piston speed (friction), low cylinder heat loss,

high air swirl rate, and compact combustion chamber.

A large-bore, short-stroke engine reduces engine width and mean piston

speed for • given displace_nt and RPH. Reduced _•n piston speed reduces

friction, which helps reduce brake specific fuel consumption (BSFC). The

large bore, however, increases indicated specific fuel consumption because
of higher heat losses and increased combustion duration. To minimize BSFC

then, an optimum bore-to-stroke ratio mast be selected such that the

increasing ISFC is offset by decreasing friction specific fuel consumption
(FSFC):

B$FC - ISFC - rSFC.

In the conventional •park-ignition aircraft piston engine, a somewhat

higher bore-to-stroke ratio can be accommodmted because th• increased com-

bustion duration is somewhat costpensated by the two spark plugs in each

combustion chamber that fire simultaneously, resulting in reduced combus-
tion duration.

The bore-to-stroke rmtioa for i)dern aircraft piston engines range from

1.25 to 1.35 compared to automotive engines, which range from 0.8 to 1.3.
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The compression ratio for both engine designs was set st 12:1 •s a nominal

value for calculating the engine's maximum pressures. In actual practice
the compression ratios will be adjusted slightly from this value to ensure

op,.r_tion at or below these peak pressure values.

4.3 _ngine Power Balance

The result of the complex iterative procedure used to arrive at engine size

and performance can be c•psulized in the form of • power balance. Starting

w_ch the equivalent power input in terms of fuel to each of the engines, a

thermodynamic accounting has been made ot the flow of power to the various

losses within the engine in order for ic to produce s brake output of

[86 kW st 7620 m in cruise. This was done for the two advanced engines as

well as for • current-technology engine, which is used as • baseline.

Figure 19 shows the distribution of power among the three categories of

consumption: brake output, exhaust losses, end cooling losses, for each of

the three engines. The quantity of eqaivalent fuel input power was reduced

by 20% and 26%, respectively, for the NoderaCe Risk Technolof V /rnfine and

High Risk Technologv 2_ngine over the current-technology engine.

Figures 8, 9, and I0 show detailed power flow diagrams for each of the

three engines.

The current-technolo[y, TSIO-550, engine is turbocharged and, for 186 kW
(250 hp) shaft output, has an equivalent of 292 kW (39l hp) available in

the exhaust, of which only 25 kW (34 hp), or 8.7%, is recovered as power to

the turbocharger compressor. The Moderate Risk Techno2og_ Ermine has only
219 kW (294 hp) available in the exhaust but recovers 20 kW (27 hp), or

9.2_, through _urbocharging and curbo_o=pounding. Likewise, the High Risk

Technology En<]ine recovers 18 kW (24 hp) of the 182 kW (245 hp) available

in the exhaust.

4.4 Special Features

The engine design contains many special design features, some of which are

not considered advanced technology but rather crossover technology - that

is, existing technology from other areas that had not been applied to air-

craft piston engines before. Figure 20 shows cross sectional views of the

High Risk Techno_og_ _n_ine, where some of these features can be seen.

Because of the high-peak firing pressures (10,342 kPa) in the Bi@h Risk

Technolos7 _ _ngine a unisteel cylinder is used. It is • fabricated assem-

bly made by _elding the cylinder barrel, combustion chamber dome, and

exhaust port into • single ,,nit and then casting the aluminum fin section
around it. This unisteel design eliminates the weakness of an •lmalnmn

head screwed onto • steel barrel and also helps to retard heat transfer to

the head and exhaust port. The unisteel design gives a more rigid con-
struction so that _he exhaust valve operation is not hampered by large
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thermal !istortLons between the valve seat and valve guide. Also, in com-

binatio- .:th the unisteel design, Inconel exhaust port liners are

included r help further decrease heat transfer to the cylinder head

region, retaining as much energy as possible in the exhaust gases for use

in turbocompounding.

The high thermal and mechanical loading of the aluminum piston dome will

require better cooling of the underside of the piston. Normal practice is

to provide a steady stream of oil from a tube in the crankcase fed from an

_:_ --'' .... Th.e steady stream of oil is aimed at the underside of the

piston, providing a rather irregular cooling pattern. The use of a so-

called cocktail shaker on the underside of the piston provides more posi-

tive cooling. Oil is fed through passages inside the connecting rod

(Figure 20) to a cavity formed between the cocktail shaker and the under-
side of the piston. The oil is splashed back and forth by the motion of the

piston (as in a cocktail shaker) and the excess spills over the edges of

the cocktail shaker and returns to the sump by way of the inside of the

piston skirt and lower cylinder barrel.

The piston ring package was especially designed for this engine by Koppers

Company. The three-ring design is intended for reduced friction, reduced

oil consumption, and lower combustion gas blowby. One unique feature of

this design is a "fire ring" at the top corner of the piston (Figure 21).

The ring material is ductile iron with a plasma-coated molybdenum face

operating in a iron ring groove that has been cast into the aluminum

piston.

The intermediate ring is also plasma-coated and was designed to survive

marginal lubrication periods. It also assists in oil control when the pis-

ton approaches bottom dead center.

The lower ring is the oll control ring, which is vented to the underside of

the piston and backed by a spring to maintain uniform pressure.

The engine luhricant plays an important part in maintaining proper engine

temperatures. Iv this design (Figure 20), additional cooling is provided

to the exhaust valve seat by circulating oil in a torroidal passage bchind
the seat.

Normally, the heat rejected to the engine oil of a high-output engine is of

such high magnitude that a separate oil cooler must be used to cool the

oil. Although it is not shorn in detail, the scheme vsed for cooling the

oil for the advanced engines is to design the oil sump to serve as an oil

cooler as well, avoiding the need for a separate oil cooler. The sump
would be designed with finned passages, which would be cooled externally by

ram air. Internally mounted thermostatic switches would maintain oil tem-

perature at the desired level for a given operating condition (approxi-

mately 77oc).

The Nasvytis traction drive, which reduces the speed of the turbocompound-

ing turbine, is coupled with a power transfer system and clutch, which
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transfers power back into the engine crankshaft when excess power is avail-

able. The output of the traction drive is connected to the clutch assembly

by a toothed belt similar to that used to drive the overhead camshaft in

automotive engines. The toothed belt will help reduce the transmission of

torsional vibrations and will operate quieter than a chain or gear drive,

whi'e at the same time providing an additional speed reduction.

Torsional vibrations caused by the forces of the firing pulses of each of

the six cylinders through the crankshaft to the engine output reduction

drive and finally to the propeller must be dealt with to avoid high stress

in the crankshaft and propeller. The predominant harmonic is a third-order

excitation resulting directly from engine firing pulses for the six-

cylinder engine. In a geared engine, which runs at higher speed than a

direct-drive engine, the natural torsional vibration frequency of the

drive system would be near the third-order forcing function of the firing

pulses, causing large amplitude flexing of the system with correspondingly

high stresses. The stresses are reduced by placing along the crankshaft

three pairs of pendulum weights tuned to attenuate third-order torsional

vibrations (Figure 22), adding a viscous damper at the rear of the crank-

shaft and using a flexible quill shaft to reduce the system stiffness. The

pendulum weight pairs are not needed for engine balance. They are placed

opposite each other so that they balance each other out, and so the addi-

tional weight they add to the crankshaft is not a necessity if another

method can be found to reduce torsional vibration amplitudes.

A method used on the Tiara 6-285 series of engines is incorporated in the

advanced engine designs. It is called a Vibratory Torque Control (VTC)

unit. It eliminates the need for pendulum vibration absorbers by hydrauli-

cally causing the drive system to exhibit two distinct degrees of torsional

rigidity, depending on engine speed. At low speed, the VTC unit locks up

to make the system torsionally rigid, and at a higher speed, it becomes

more flexible, driving through the quill shaft (Figure 22). As a result,

the crankshaft using a VTC unit weighs less than half that using pendulum
vibration absorbers.

4.5 Advanced Engine Specifications

Table VII shows a comparison among the specifications of the three

engines: current-technology, TSIO-550; Moderate Risk Technolos_, GTSIO-

420; and Hish Risk TechnologN, GTSIO-420/SC.

An indication of the improvement in efficiency gained over the current-

technology engine is in the exhaust power unrecovered at maximm cruise

power. T_b!e V_ shows _ _31 reduction in this value for the Moderate Risk

Technolog N Engine, and, for the High Risk Technologw _nglr_, the unrecov-

ered power rejected in the exhaust is reduced by half.

Figure 23 shows an artist's conception of the High Risk Technologw Engine.
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SECTION 5.0

ENGINE/AIRFRAME INTEGRATION

t

o

i

J_

5.1 Introduction

This project resulted from an agreement by Beech to evaluate two

advanced piston engine concepts developed by TCM. The evaluation objec-

tive was to determine the effects of the two new engines on overall air-

plane performance when compared to airplanes using current-technology

engines. To accomplish this, two airframes, one single engine and one twin

engine, were synthesized. Performance and cost calculations were made for

each, using all thr_e engines. Since the airplanes were otherwise identi-

cal, differences in performance and cost were attributed to the engines.

The two advanced engines, termed Moderate Risk Technolo_3 Engine and Nigh

Risk Technology Erxjine, are both six-cylinder, horizontally opposed,

geared, turbocharged, turbocompounded, spark-ignition, fuel injection
units of 6.88 liters (420 in_). Both are rated at 260 kW (350 hp) using

gasoline in the Koderate Risk Technology Encjine and jet fuel in the High

Risk TechnologN Bn_ine. The engines are alike exernally but the more

advanced engine is lighter in weight and has lower fuel consumption. TCM

furnished details on these engines and a current-technology engine with

the same power to use in the comparison baseline.

Beech synthesized two airframes for the study, both pressurized, for

operational altitudes compatible with the turbocharged engines. The

single-engine and twin-engine airframes are six-place designs, the latter

with more cabin room for a lavatory and baggage. With these airplanes and

engines, performance, cost, and noise estimates were made and compared.

Sketches were made of the engine installations and the airplanes to check

compatibility.

The results of the project indicate that very considerable savings in fuel

could result from the use of advanced engines of this type. Airplane

accuisition costs would be up somewhat but overall operational costs would

be significantly reduced. No outstanding problems with noise, installa-

tion, or airplane configuration were indicated by the study.

5.2 Airplane Performance

A series of iterative calculations were used to establish the baseine air-

frame configurations used in this study. Data used to start the process

can be grouped into three types: 1) desired mission profile parameters,

including range, speed, payload, and field lengths; 2) airplane character-

istics, including drag parameters, weight parameters, and field length

parameters; and 3) engine characteristics, including weight, power, and

fuel consumption. The objective of this process is to produce specific

airplane characteristics, including drag, wing area, power required, and

J
i_
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weights that match the chosen input parameters and mission profile. The
_teration method was calibratpJ by a series of trial calculations, begin-

ning with characteristics of known single- and twin-engine airplanes.

The calibrated calculation method was used with data for the current-

technology engine and desired mission profiles to obtain the characteris-

tics and performance of airplanes using that engine. These results were

used as s basel_ne for comparison with the performance of the same air-

planes using the two advanced engines, all cruising at 7620 m (25,000 ft).

Performance for the airplanes using the Itoderate Risk Technolo@ N Engi.._e

and High Risk Technologv Engine was established next. These engines had

lower weight, fuel consumption, and cooling drag. With these changes t

advanced-engine airplane performance was calculated with a straightforward
series of equations. Performance was calculated at 7620 m (25,000 ft) for

comparison with th_ baseline airplanes and also at 9144 m (30,000 ft) and

10,668 m (35.000 ft) to get an indication of high-altitude results with the

advanced engines. Significant improvements in airplane efficiency are

indicated with the advanced-engine technology.

With the method calibrated, the current-technology engine data in

Table VII and the desired mission profiles for cruising at 7620 •

(25,000 ft) were used to calculate the single- and twin-engine current-

technology airplane data shown in the left column in Tables VIII and IX.

These tables show mission profiles, airplane characteristics, and airplane

performance. The baseline airplane data is used as a basis for comparison

with data generated for the same airplanes with advanced engines, as

described in the next section.

The Moderate Risk Technology Engine and High Risk Technology _ngine air-

planes differed from the baseline ,onfigurations only in engine installa-

tion. Takeoff weights, engine powers, cruise altitudes, field lengths,

and wing areas from the baseline configurations were held constant. The

other mission profile values of range, speed, ann payload were increased as

a result of the advanced-engine's lower drag, weight, and fuel consump-

tion. Advanced engine data was taken from Tables VII a_d X. The reduc-

tions in installed engine weight resulted in increased useful toad. Since

large increases in range were indicated for the airplanes with advanced

engines, the arbitrary decision was made to divide the increase in useful

toad equally between fuel and payload. This still left substantial range

increases for the advanced-engine airplanes and illustrates another advan-

tage for them, that of increased psyioad.

After the project was well under way, NASA requested that cruise at

10,668 m (35_000 ft) be investigated. Performance figure6 for the air-

planes using the two advanced engines cruising ac 9144 m (30,000 ft) and

10,688 m (35,000 ft) were obtained in the same way at 7620 m (25,000 ft)

figures using the high-altitude engine data in Table X. The results are

shown in Tables VIII and IX. The only difference was that average rates of
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climb at 8382 m (27,500 ft) and 9144 m (30,000 ft) and 10,668 m

(35,000 ft). ICruise speed, range, and reserve calculations were made at

9144 m (30,000 ft) and 10,668 m (35,000 ft) using the same methods used

for 7620 m (25,000 ft) performance.

Range at 9144 m (30,000 ft) for both the Moderate and High Risk Techoolog9

singles is higher than 10,668 m (_5,000 ft). The models for the airframes

used in this study were based on current-technology airplanes, so apparent

performance improvements would be due to the engines. Airplanes of this
type are designed to have a maximum cruise altitude of about 7620 m

(25,000 ft). The decrease in cruise speed going from 7620 m (25,000 ft) to

10,668 m (35,000 ft) shows that service ceiling is being approached. Even

for the twin, the small range improvement is probably not worth increased

mission time. Different baseline airframe designs should be used if cruise

at these high altitudes to save fuel is a primary objective.

Current certification requirements for single- and twin-engine airplanes
result in single designs that have a lower rate of climb than a twin using

the same engines at a given altitude. Maximum range for turbocharged air-
planes can generally be expected to increase to some altitude where the

rate of climb drop_ !gw enough to cause the total range to begin decreasing

because of the amount of fuel used in climb. This has apparently happened

in the altitude range of this study for the single-engine airplane. The

altitude for this effect would be higher for the twin with its higher rate
of climb. Considerably more detailed engine and airframe data would have

to be developed to investigate this situation in more detail. In any case,

the margin of range increase with the advanced engines in this study is
great enough to conclude that these engines offer a considerable increase

in efficiency.

Comparative performance advantages that would be realized vith these

advanced engines are indicated by the percentage performance differences

shown in Tables VIII and IX. These percentages relate both the Moderate

and Bigh Risk Technolocj9 Kngine columns to the current technology column.

The increases in useful load are significant but the increases in range or
fuel efficiency are extremely high. The prospect of reducing fuel consump-

tion by percentages of this order should make these new engine concepts

well worth developing. Figures 24 and 25 show a summary of the slngle- and

twin-engine perfonunce for all three engines - current, moderate risk,
and high risk technology.

For the particular mission profile of maximum range at maximum cruise at an

altitude of 7620 m (25,000 ft), a number called "relative efficiency" has

been calcualted to quantify the improvement over a current-technology

o m

i

IT he use of average climb rates was checked with a more extensive climb

performance method and found to be reasonable for purposes of this
project.
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design. The number is normalized to unity for the current-technology
single- and twin-engine airplanes and the relative efficiency numbers for
the Moderate and High Risk Techno]oc_ Engil_s are ratios that indicate a

percent improvement in transportation efficiency over current technology.

The transportation efficiency (TE) numbers from which these normalized

values were calculated are based on the simple definition that the highest

efficiency means transporting the largest payload over the greatest dis-

tance using the least amount of energy:

TE . Payload x Range (with 45 min reserve fuel)
Mass of Fuel Consumed

The TE number is not a constant for s given aicptane, but it depends on the

mission profile, in the case of Figures 24 and 25j maxlamm range at 71.4g

power cruise and 7620 m (25,000 ft) cruise altitude.

These TE numbers provide a useful means of comparison among similar air-

planes, although no weighting factors are used to indicate the value of
time saved during a trip. Of two airplanes having the sane TE value, the

one that flies faster would obviously be more valuable by some degree.

Figure 24 shows that the Moderate and High Risk ?echnology Engines give a

39 and 63Z, respectively, better TE when installed in the slngle-engine

airplane. For the twin-engine airplane, the corresonding improvements in

TE are 41 and 68Z, respectively.

Another less rigorous comparison can be made by calculating passenger-
distance per unit mass of fuel. Both the single- and the twin-englne _ir-

planes proposed here are six-place, including the pilot. The current-

technology, single-engine airplane has a payload with full fuel of 554 kg

(1200 lbm), which means it could carry a per-passenger load of 91 kg
(200 Ibm). It would have a passenger efficiency of 39 passenger-kl/kg of

fuel (9.6 passenger-n.mi./lb of fuel) compared to the High Risk

_echnolo_, single-engine powered airplane of 59 passenger-kR/kg of fuel

(14.5 passenger-n.mi./lb of fuel). This factor makes the High Risk Tech-

nolo_ Engine version appear to be only 1.5 times as efficient compared to

the relative efficiency of 1.63-tlmes as calculated by the TE method.

5.3 Aircraft Noise Estimates

Aircraft noise estimates were based on the criteria in FAR 36. This calls

for a noise measurement when the airplane flies over the measuring station

at an altitude of 305 m (1000 ft) using full power and maximum speed. This

measured noise is then corrected by a term calculated according to a for-

amla given in FAR 36. The correction favors high initial rates of climb.

• =
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Maximum power flyovec speeds were calculated with the method already

described using appropriate cruise drag figure8_ including changes caused

by cooling drag differences and 85% propeller efficiency. Flyover noise

figures were calculated using a modified method based on empirical data

developed by Hamilton-Standard.

Climb speed, total distance to climb to a 15-m and (50-it) altitude, and

rate of climb for use in calculating correction factors were based on the

corresponding calculations used in determining airplane mission perform-

ance. Climb propeller efficiencies of 75% and reasonable ratios of liftoff

to stall speeds were assumed. Corrected flyover noise estimates for the

baseline engine at 2800 RPM and the two advanced engines at 2400 RPM are

shown by the upper figures in Table XI. In all cases, the propellers were

sized to maintain 85% cruise efficiency. This combined with small differ-

ences in flyover speed, climb speed, and drag resulted in the indicated

variation in propeller diameters. These preliminary estimates indicate

that 2400 RPM is the maximum that could be used for the advanced engines to

just meet the maximum corrected noise value of 80 dB(A) currently allowed

by FAR 36.

Noise estimates for the most advanced engine at 2200 and 2000 RPM were also

made. A propeller diameter of 2.4 m (95 in.) was used in all of these
estimates. This is nearly the ma=i_Jm practical propeller diameter for

airplane configurations of the type considered in this _tudy. Smaller

diameters could probably be used and cruise efficiency maintained, but

climb perforr_nce could be expected to be lower. A more extensive propel-

ler optimization would be needed to further investigate lower propeller

speed. These results indicate that an RPM lower that 2400 is desirable for

engines of this power in these applications to provide a comfortable margin
on current noise limits.

5.4 Engine Installation

Since the Moderate and High Risk Technolog N Engines are essentially iden-

tical externally, the following comments and installatin sketches shown in

Figures 26 and 27 apply to both. Engine features initially taken into con-
sideration for the installation sketches included the aft-mounted accesso-

ries and turbines, the location of the propeller speed reduction sear case
with the extended shaft, and the updraft cooling, The fairly high extended

propeller shaft suggested a tapered forward nacelle faired into the pro-

peller spinner with the extended shaft and the updraft cooling. These fea-

tures were used on both the single and the twin. A bed-type mount was used

to leave the back of the engine clear for accessories. The _aount would be

steel to meet FAR fireproofing requirements. This applies to both the

single and the twin; in the former case, the bed mount ties to the keel to
transfer nose gear loads and allow a relatively lightweight combination
structure for both keel and mount.

The two cooling air inlets supply air to a common plenum below the cylin-

ders. Cooling air for all purposes is supplied froa the plenum. After
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flowing up around the cylinders, cooling air is discharged through top

exists in the twin nacelle. On the single, this air must be routed down

the back of the engine compartment to a bottom exit. This avoids the pos-

sibility of oil vapor impinging on the windshield. Intercooler air is

routeo to tne_e exits. Oil cooling is accomplished by fins on the engine

oil sump. A shroud around the sump takes air from the plenum past the fins
and to the exit.

A flush induction air inlet, separate from the cooling air is used. This

provides cool induction air and avoids the possibility nf bleed air con-

tamination from the area adjacent to the engine itself.

5.5 Cost Estimates

The cost estimates for this studyt as noted in the sumnary, were made in

two parts: acquisition costs and operating costs. Beech used internal

data and methods to estimate airframe construction costs and added markups

for a total selling price estimate. Operating costs were based on a survey

of actual costs being encountered by users of Beech airplanes. I)etails of
both cost estimates are given with numerical data and results in
Tables XIl, XIIl, and XIV.

The method used in estimating acquisition costs is based on airframe

weight, historical data, and learning curve theory. Six sets cf estimates

were made, as described in this section: slngle- and twin-engine airplanes
using the three study engines. The main items in an estimate of the sell-

ing price of an airplane are shown in Figure 29. The cost to the factory
in building the airplane is the sum of material, labor, and amortized

development costs. Factory and dealer markups or profits are added to the

factory costs. Since most airplanes are delivered with options in addition

to standard equipment, this amount is added to produce the unit selling
price, or acquisition cost.

Airframe weights for the single- and twin-engine airplanes were estimated

from the airplane empty weights produced by the airplane synthesis calcu-

lations, engine weights from the TCM data, and Beech estimating methods.

These weights were used, as described below, in calcuIating airframe labor
and amortized development costs.

As shown in Figure 28, material costs are grouped into four categories.
Engine costs were supplied by TCM. Equipment and standard avionics costs

were estimated by Beech using current data for airplanes in the classes
considered for this study. Current material costs for airframes of the

types considered in the study were used to estimate dollar-per-pound fig-
ures for the study airframes. These figures multiplied by the airframe

weights derived from the synthesis process provided airframe costs. The

sum of engine, equipment, standard avionics, and airframe coats is the
total material cost.
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Labor costs were obtained by multiplying man-hours required to produce

each pound of airframe weight by the cost of each hour of labor. Experi-

ence has shown that when the number of hours required to produce a given

airframe is plotted against the cumulative number of airframes produced, a

curve of the form y = C/X n results where

y - hours to produce a given unit

c - number of hours required to produce the first unit

X - cumulative number of units produced

n - exponent representing the "slope" of the curve.

Slope is the fraction of hours required to produce a doubled number of air-

frames, such as the second referred to the first of the 1000th referred to

the 500th. An 80% slope means that the second or 100th unit required 80%

of the hours for the first or 500th, respectively. Appropriate historical

data of this type was used to choose a cumulative number of units produced

for costing purposes and corresponding hours per pound figures for the air-

planes in this study. Current labor rates were used to estimate labor cost

per hour. The product of these estimates and the airframe weights provided

estimated labor cost.

Historical data was also used with considerations of current trends to

estimate development cost-per-pound numbers for the study airplanes. This

number multiplied by the airframe weight and divided by the cumulative

number of units chosen from the learning curve data provided amortized

development costs.

The sum of total material cost, labor cost, and amortized develoment cost

is the total factory cost. Typical manufacturers' and dealers' profits

were then calculated and added to the total factory cost. A final incre-

ment was added for typical optional equipment and avionics selections to

obtain representative dealer's price tag figures. The same sets of reason-

ably realistic assumptions were used throughout, so the results should be

adequate for obtaining an idea of the difference in retail prices resulting

from the engines in this study. Acquisition price percentage changes from

the baseline configurations to the configurations with advanced engines

are shown on the cost summaries for single and twin-engine airplanes

(Tables Xlll and XlV). The maximum cost increase, about 7Z, for the more

advanced twin, is quite reasonable when combined with the 16% reduction in

operating cost for the same airplane.

Operating cost estimates in this study are based on two sources: engine

costs supplied by TCM and data taken from operating cost surveys made by

Beech. The engine cost factors contributing to airplane operating costs

are listed in Table KII. Depreciation is not included. The survey data

consisted of recent averages of actual nationwide operating costs for air-

planes similar to those in this study. Since the survey was made in late

1979 when fuel costs in particular were rapidly trending upward, that

aspect of this study should be considered in relative rather than absolute
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terms. Cost summaries for the single- ar,-dtwin-engine airplanes are shown

in Tables XIII and XIV in the form of percentage changes relative to values

calculated for the baseline airplanes using the current-technology engine.

The first item is acquisition cost, which was explained in the previous

section. The remaining items are operating costs per hour, which are

explained in sequence in the following paragraphs, beginning with fuel.

Note that an 800-hr operation per year was assumed for the single-engine

airplane and lO00 hr for the twin.

Fuel costs per hour were calculated from _ruise fuel consumption, cruise

power, fuel cost, and fuel density. Oil costs per hour were calculated

similarly from oil consumption rates, oil cost, and oil density:

Fuel Cost Per Hour
(Cruise SFC)(Cruise Power)(Fuel Cost)

(Fuel Density)

Oil Cost Per Sour = (Oil Consumption)(Oil Cost)

(Oil Density)

Inspection maintenance costs for the single-engine airplane were estimated

indirectly. Since the single- and twin-engine airframes are similar and

similarly equipped, the following method was used to estimate inspection

and maintenance costs for a pressurized sing!e-type _irfr_e. "I&M" is

inspection and maintenance foz the airframe; "ENG" is engine; and "Pres.

Sing." is pressurized single engine airframe. The 58P and 58TC are current

pressurized and unpressurized twin-engine airplanes. The A36TC is a cur-

rent unpressurized single-engine airplane. The ratio of the difference in

engine and airframe IbM cost for an unpressurized airplane was established

using 58P, 58TC, and TCM current-engine I&H cost data:

Ratio
(58P I&M - 2XENG I&M) - (58TC I&M - 2XENG I&M)

i

(58TC I&M - 2XENG I&M)

Ratio was then used to get an engine and airframe !&M cost for a pressur-

ized single, starting with A36TC data:

Ratio = (Pres. Sing. I&M - ENG I&M) - (A36TC I&M - ENG I&M)
(A36TC I&M - ENG I&M)

Solve for Pres. Sing. IbM:

4.

Pres. Sing. I&M - Current Engine I&M = Pres. Sing. Airframe I&M.



Airframe inspection and maintenance costs for the twin-engine airframe

were based directly on the survey results:

(Duke, 58P average I&M) - (2 times C rrent ENG I&M) = Twin airframe I&H.

Engine inspection and maintenance costs are TCM-supplied values. Corre-

sponding propeller costs are taken from the survey data.

Engine exchange costs were calculated by dividing the total cost by the

time between overhauls, both values supplied by TCH.

Hangar rental figures were taken from the survey results for similar air-

planes. An increment was added to account for storage costs when the air-

plane was away from its base. Both the single and the twin values were

calculated with the method shown using appropriate survey figures:

Hanger Rental = Rent/Year + S/Hour Storage Away from Base (Hours/Year)
Hours/Year

Insurance costs were estimated by using survey results to calculate the

annual insurance cost per $I000 of selling price for similar airplanes.

This was multiplied by the estimated acquisition costs of the study air-

planes to get snnual insurance cost estimates. Costs for the pressurized

single-engine airplanes were estimated with a ratio method similar to that

explained earlier for the airframe inspection and maintenance costs.

Insurance cost per year per $I000 of selling price is denoted by $/K. For

the single-engine airplane, the following method was used:

58TC S/K - 58P S/K

58TC S/K
= Ratio

A36TC $/K - Pres. Sing. $/K
A36TC RE

= Ratio

Solve for Pres. Sing. S/K:

Ins./Year = (Selling Price/t000) S/K
Hours/Year

Survey numbers were used more directly to estimate the twin-engine air-

plane values:
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Ins./Year = (Selling Price/lO00),_/K
Hours/Year

The notable advantage of the advanced engines on Tables XlI! and XIV is the
marked decrease in fuel consumption. Fuel costs for the most advanced

engine are dramatically lower because of the combination of lower consump-

tion and lower per-gallon cost. This would be an increasing advanta&e as

fuel costs continue to rise. Total operating costs are reduced by a lower

proportion when all factors are subbed up. The percentage decreases in

direct operating cost could be calculated on a per-mile basis because of

the higher cruise speed of the advanced-engine airplanes. The exact fig-

ures would depend on block speeds that were not estimated in the scope of

this study.

5.6 Airplane Three-View Sketches

Airplane sketches for the single- and twln-engine configuration concepts

are shown in Figures 29 and 30. As noted in the engine installation dis-

cussion, the two advanced engines are nearly identical externally, so

these three views represent airplanes with either one. The synthesis pro-

gram provided basic wing areas and a tail area ratios. The engine instal-

lation layouts provided n_se and nacelle shape information. The payload

and fuel load figures from the synthesis process and the mission concepts

were used with the ocher data to make these rei-esentative sketches of the

airplane concepts evolved in this study. The engine concepts go well with

these conventional airplane concepts; no airframe configuration problems

are foreseen with engines of this type,
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SECTION 6.0

TECHNOLOCY ENABLEMENT PLAN

6.1 Introduction

In Task IV, a timetable is offered with a recommended plan of action that

would result _ bringing the expected new technology to the point of com-

mercial produca.on by December 31, 1989. The technology enablement por-

tion is suggeste_ to be a joint Government/industry program with the actual

engine prototype tevelopment programs through production to be accom-

plished by industry.

The High Risk Technology Engine is the main focus of this study, whereas

the Moderate Risk Technology Engine can be considered a minimum acceptable

representation of an advanced-technology design. These two engines

bracket the range of technology that could reasonably be expected to be
made available for an engine that would be in production by the beginning
of the next decade.

_he recommendations of Task IV are aimed specifically at acquiring that

technology needed for the High Risk Technology Engine design. Should any

of the technology items not be available, then alternative techologies

specified in the Moderate Risk Technology Engine design would be
substituted.

6.2 New Technology Program Schedules

Table XV shows the overall program plan necessary for introduction of the

High Risk Technol_ Engine into the marketplace by January I, 1990.

A preliminary engine definition completed in mid 1980 (the results of this

contract work) followed by the suggested technology programs, some of

which are now under way, would result in a precise engine definition by

December 31, 1984. A first experimental engine containing all of the ele-

ments of advanced technology would be ready by the beginning of 1986, fol-

lowed by a certification and production decision early in 1988. The

remainder of the time would involve FAA engine and airworthiness certifi-

cation and, finally, production. The critical technology items that are

needed are shown in Table XVI: stratified-charge combustion system, elec-

tronically controlled ignition, improved turbocharger, turbocompounding

system, and electronic engine controls. This work covers the period from

the beginning of 1981 until mid 1984.

Tables XVII through XXI are detailed program plans for each of the five
critical advanced-technology programs. Each of the five programs is inde-

pendent of one another initially during rig tests and is integrated for

propeller stand and dynamometer testing after proven satisfactory in

63



design. The single-cylinder tests for the stratified-charge combustion

system (Table XVII) will provide the design basis for multicylinder engine

configuration testing using an existing six-cylindert turbocharge engine

with modified cylinder assemblies. This work not only provides the basis

for the final integrated advanced design, but also explores the potential

for conversion of existing turbocharged engines to charge stratification

should that strategy appear attractive in the future. During Task 6 of the

stratified-charge combustion system program, s second design is used

approaching more closely the desired integrated engine design.

At this poi_:, the second design is integrated with its electronic ignition
system (Task 4, Table XVIII; the advanced turbocharger, which las already

been flight-tested; the turbocompounding system (Task 6, Table XX); and

the electronic, single-lever power control system (Task 5, Table XXI).

The integrated system is then ready for propeller stand and dynamometer

testing during the second half of 1983, preceding actual £11ght tests in
1984.
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SECTION 7.0

CONCLUSIONS AND RECOMMENDATIONS

With the decentralization of American business and the deregulation of the

commercial air carriers, general aviation has become an increasingly

important segment of our national transportation system serving all of the

country's l_,O00 airports compared to only 350 airports available to the

airlines. Over 92Z of the active aircraft in the general aviation fleet

are now powered by spark-ignition aircraft piston engines fueled by avia-

tion gasoline.

Rapidly advancing areas of new technology, fuel shortages, increasing fuel

cost, and demands for increased safety have led to a reconsideration of the
suitability of current engine designs to meet the needs of the _ecades

beyond the year 1990.

This study has shown that a reasonable plan of action, not without some

technical and financial risk, could result in a new generation of spark-

ignition aircraft piston engines that would be suitable to accomaodate the

need for a vastly improved powerplant to better serve general aviation
beyond 1990. A conservative analysis based on the installation of such an

engine in current state-of-the-art airframes yields transportation effi-

ciency improvements of over 60Z compared to existing single- and twin-

engine airplane designs.

Successfully adopting the stratified-charge concept would allow this new

fsmi!y of engines to use liquid hydrocarbon fuels, which are more abundant

and more efficient from an overall VFR viewpoint than the aviation gaso-
lines used today.

The integration of electronic engine control has a positive effect not only

on fuel efficiency but also on safety of flight, by reducing the amount of

interaction between pilot and engine, thereby reducing pilot workload.

The concepts suggested in this study and the programs outlined for the

realization of their successful development are deemed worthy of a firm and

timely co,mitment by both the industry and Government to meet the changing

needs of general aviation propulsion in the years to come.
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Figure 11. Basic Geometry of a Nasvytis Multiroller Traction Drive.
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Figure 13. Schematic of Possible Electronic Fuel Control System as

Applied to the TCM Continuous Flow Fuel Injection System.
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Figure 15.

J

Air-Cooled, Horizontally Opposed, Inverted "V," and

Radial Configurations.
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Figure 16_ Liquid-Cooled, lO-Cylinder Swashplate Configuration.
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Figure 17. Alpha Silicon Carbide Turbine Wheel and
Scroll Housing.
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TABLE II. ADVANCED TECHNOLOGY BASE HIERARCH|CAL STRUCTURE

I
COMBUSTION SYSTEM

i i m •

I ENGINE OPE_ ATIONAL

! !
I CONFIGURATION I i COOLING

i 1
i

.. I
I ...A:E.,A.si

!

!

[ ENGINE AUXILIARY SYSTEMS ]

i

1 LUBRICANTS !
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TABLE Ill. GOVERMENT L[GISLATION PERTAINING TO OIL INDUSTRY

i

1926

1931

Pos t- i 945

| i m

OIL DEPLETION ALLOMANCE - A 22i[ flat-rate deduction that
applies to both d_s----_Fc and foreign otl wells. (2)

D_AND PRORATION|NG - The oil boom caused excess ot1 on the
market, which drove the price down to 10¢ per barrel. Demand

prorationing limits the production of oil to that quantity
which can be sold at a profitable price. (2)

FOREIG_¢ TAX CREDITS - Relating to the Persian Gulf dis-

coveries after World War II, the foreign tax credit alln_s

oil c_nles to subtract foreign taxes {royalties) in t,r II
from their U.S. tax bill. (2)

1959 - Foreign oil was cheaper by about $I•50 per
t quotas reduced the amount of imported oli.

It became more economically feasible to build ne_ refineries

abroad where there was nm import q_mta. The result was a
shortage of U.S. refining capacity. (2)

1971 FEDERAL PRICE CONTROLS (2)

1975

1975

ENERGY POLICY AMI) CONSERVATION ACT - Phased decontrol of oil
price controls and mandatory energy efficiency standards. (8)

REVISED OIL DEPLETION ALLOWANCE - The Oil Depletion Allowance
ended 'in 1975 for all "but _ndependent oil companies and lease-
holders•

1978 NATIONAL ENERGY ACT - A five-segment plan that deals with
reduction of energy use and promotes the use of alternate
energy sources• The purpose of the plan is to reduce U•S.
dependen_a on foreign oil. (8)

1979 CRUDE OIL DEREGULATION - Deregulation of crude oil with "wind-

fall profits" t_xed at 70 to 90%. About 15% of windfall pro-

fit taxes collected by the Federal _vernment to go toward

research amJ development of alternate sources of energy. (6)

ALTERNATE FUEL RESEARCH AND DEVELOPMENT - Initial $200 million
awarded by Department of Energy-for feasibility studies and
co-op agreements for coal liquefaction, gasification, alcohol
and other biosmss fuels, coal-oil mixture, and municipal
waste.
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TABLE V. ESTIMATED AVERA_ 1976 YIELD FROM A BARREL OF
CRUOE 01L

PROOUCT

GASOLINE

DISTILL.AT( FUEL 01L

RESIOUAL FUEL OIL

JET FUEL

STILL GAS

PETROCHEMICAL FEEDSTOCKS

ASPHALT

COrE

LIQUIFIED GASES

LUBRI C,RNTS

KEROSENE

SPECIAL NAPHTHAS

ETHME (INCLUDING ETHYLENE)

MAX

100.0

SOURCE: Percentage Yteld, U.S. Bureau of Mtnes

YIELD

44.4

21.3

10.0

6.6

3.6

3.2

2.7

2.5

2.4

1.3

1.1

0.7

0.1

0.1
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TABLE XIII. COST SUMRARY -- SiNGLE-ENGINE AIRPLANE

USE: 800 HOURS/YEAR

PERCENTAGES INDICATE CHANGES FROM BASELINE AIRPLANE VALUES.

ACQUISITION COST

FUEL

OIL

INSPECTION AND MAINTENANCE

MODERATE
RISK
(_)

+ 3.16

-2O

-34

AIRFRAME

ENGINES

PROPELLERS

ENGINE EXCHANGE

HANGAR RENTAL

INSURANCE

TOTAL DOC/HOUR

0

-10

0

-10

0

+3

-11
J

HIGH

RISK
(z)

+ 6.21

-48

-34

0

+8

0

+9

0

+6

-15

ii

il

.I

.I

.I

ii

I
o

l
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TABLE XIV. COST SUMMARY -- TWIN-ENGINE AIRPLANE

USE: 1,000 HOURS/YEAR

PERCENTAGES INDICATE CHANGES FnOM BASELINE AIRPLANE VALUES.
i .... i

ACQUISITION COST

FUEL

OIL

INSPECTION AND MAINTENANCE

AIRFRAME

ENGINES

PROPELLERS

ENGINE EXCHANGE

HANGAR RENTAL

INSURANCE

TOTAL DOC/HOUR

MODERATE

RISK

+ 3.63%

-33

0

-lO

O

-IO

0

+4

°12

HIGH

RISK

÷ 7.1_%

-48

-33

O

÷8

0

+9

O

+7

-16
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